C. TRẢ LỜI NGẮN.
Cho hàm số \(y = \frac{{4x - 5}}{{x + 1}}\) có đồ thị \(\left( H \right)\). Gọi \(M\left( {{x_0};{y_0}} \right)\) với \({x_0} < 0\) là một điểm thuộc đồ thị \(\left( H \right)\) thỏa mãn tổng khoảng cách từ \(M\) đến hai đường tiệm cận của \(\left( H \right)\) đạt giá trị nhỏ nhất bằng \(6\). Tính giá trị của biểu thức \(S = {\left( {{x_0} + {y_0}} \right)^2}\) .
C. TRẢ LỜI NGẮN.
Cho hàm số \(y = \frac{{4x - 5}}{{x + 1}}\) có đồ thị \(\left( H \right)\). Gọi \(M\left( {{x_0};{y_0}} \right)\) với \({x_0} < 0\) là một điểm thuộc đồ thị \(\left( H \right)\) thỏa mãn tổng khoảng cách từ \(M\) đến hai đường tiệm cận của \(\left( H \right)\) đạt giá trị nhỏ nhất bằng \(6\). Tính giá trị của biểu thức \(S = {\left( {{x_0} + {y_0}} \right)^2}\) .
Quảng cáo
Trả lời:
Lời giải
Đồ thị \(\left( H \right)\) có tiệm cận đứng là đường thẳng \({\Delta _1}:x = - 1\) và tiệm cận ngang là đường thẳng \({\Delta _2}:y = 4\).
Gọi \(M\left( {{x_0};\frac{{4{x_0} - 5}}{{{x_0} + 1}}} \right) \in \left( H \right)\), \({x_0} \ne - 1,{x_0} < 0\).
Khi đó, ta có: \({d_1} = d\left( {M,{\Delta _1}} \right) = \left| {{x_0} + 1} \right|\) và \({d_2} = d\left( {M,{\Delta _2}} \right) = \frac{9}{{\left| {{x_0} + 1} \right|}}.\)
\( \Rightarrow {d_1} \cdot {d_2} = \left| {{x_0} + 1} \right| \cdot \frac{9}{{\left| {{x_0} + 1} \right|}} = 9\).
Ta có: \({d_1} + {d_2} \ge 2\sqrt {{d_1}{d_2}} = 6\) nên \(\min \left( {{d_1} + {d_2}} \right) = 6\) khi \({d_1} = {d_2} \Leftrightarrow \left| {{x_0} + 1} \right| = \frac{9}{{\left| {{x_0} + 1} \right|}}\)\( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = - 4\end{array} \right.\).
Do \({x_0} < 0\) nên chọn \({x_0} = - 4\), khi đó \(M\left( { - 4;7} \right) \Rightarrow S = 9.\)
Đáp án: 9.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[ - \frac{1}{2}\].
Lời giải
Lời giải

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].
Ta có \[\alpha = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ - 60^\circ = 120^\circ \].
Suy ra \[\cos \alpha = \frac{{ - 1}}{2}\]. Chọn A.
Câu 2
Lời giải
Lời giải
Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.
Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![a) Hệ số \[a < 0\]. b) Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {1;\,3} \right)\). c) Hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\). d) \[f\left( 3 \right) = - 5\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid10-1756132215.png)