Câu hỏi:

25/08/2025 38 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI.  Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) và có đồ thị là đường cong như hình.

a) Hệ số \[a < 0\].  b) Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {1;\,3} \right)\).  c) Hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).  d) \[f\left( 3 \right) =  - 5\]. (ảnh 1)

a) Hệ số \[a < 0\].

b) Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {1;\,3} \right)\).

c) Hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).

d) \[f\left( 3 \right) =  - 5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Đúng. Dựa vào đồ thị ta thấy hệ số \[a < 0\].

b) Sai. Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( { - 1;\, - 1} \right)\).

c) Đúng. Dựa vào đồ thị ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\).

d) Sai. Đồ thị hàm số đi qua các điểm \(\left( { - 1;\, - 1} \right)\) và \(\left( {1;\,3} \right)\) nên ta có hệ phương trình

\[\left\{ \begin{array}{l}f\left( { - 1} \right) =  - 1 \Rightarrow  - a + b - c + d =  - 1\\f\left( 1 \right) = 3 \Rightarrow a + b + c + d = 3\end{array} \right. \Rightarrow a + c = 2\,\,(1)\].

\[f'\left( x \right) = 3a{x^2} + 2bx + c\] có hai nghiệm \[x = 1,{\rm{ }}x =  - 1\] nên \[\left\{ \begin{array}{l}3a + 2b + c = 0\\3a - 2b + c = 0\end{array} \right.\,\,\,(2)\].

Từ (1) và (2), giải hệ phương trình ta suy ra \[a =  - 1;\,b = 0;\,c = 3;\,d = 1\].

Do đó \[f\left( x \right) =  - {x^3} + 3x + 1 \Rightarrow f\left( 3 \right) =  - 17\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, \(SA = SB = AB\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {AS} \). Tính \(\cos \alpha \). (ảnh 1)

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].

Ta có \[\alpha  = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ  - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ  - 60^\circ  = 120^\circ \].

Suy ra \[\cos \alpha  = \frac{{ - 1}}{2}\]. Chọn A.

Lời giải

Lời giải

Từ giả thiết, ta suy ra được:

\(\overrightarrow a  \bot \overrightarrow b ;\,\,\cos \left( {\overrightarrow a ,\,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }}\); \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}\).

Giả sử lực tổng hợp là \(\overrightarrow m \), tức là \(\overrightarrow m  = \overrightarrow a  + \overrightarrow b  + \overrightarrow c \).

Khi đó, \({\overrightarrow m ^2} = {\left( {\overrightarrow a  + \overrightarrow b  + \overrightarrow c } \right)^2}\)\( = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a  \cdot \overrightarrow b  + 2\overrightarrow b  \cdot \overrightarrow c  + 2\overrightarrow c  \cdot \overrightarrow a \)

                        \( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 0 + 2\left| {\overrightarrow b } \right| \cdot \left| {\overrightarrow c } \right| \cdot \cos \left( {\overrightarrow b ,\overrightarrow c } \right) + 2\left| {\overrightarrow c } \right| \cdot \left| {\overrightarrow a } \right| \cdot \cos \left( {\overrightarrow c ,\overrightarrow a } \right)\)

                        \( = {10^2} + {10^2} + {20^2} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }}\)

                        \( = 600 + \frac{{800}}{{\sqrt 3 }}\).

Suy ra \({\left| {\overrightarrow m } \right|^2} = {\overrightarrow m ^2} = 600 + \frac{{800}}{{\sqrt 3 }}\). Do đó, \(\left| {\overrightarrow m } \right| = \sqrt {600 + \frac{{800}}{{\sqrt 3 }}}  \approx 32,6\).

Vậy độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng khoảng \(32,6\) N.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP