Một chất điểm ở vị trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.
Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Tính độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \).
Một chất điểm ở vị trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.

Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Tính độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \).
Quảng cáo
Trả lời:

Lời giải
Từ giả thiết, ta suy ra được:
\(\overrightarrow a \bot \overrightarrow b ;\,\,\cos \left( {\overrightarrow a ,\,\overrightarrow c } \right) = \cos \widehat {DAC'} = \frac{1}{{\sqrt 3 }}\); \(\cos \left( {\overrightarrow b ,\overrightarrow c } \right) = \cos \widehat {BAC'} = \frac{1}{{\sqrt 3 }}\).
Giả sử lực tổng hợp là \(\overrightarrow m \), tức là \(\overrightarrow m = \overrightarrow a + \overrightarrow b + \overrightarrow c \).
Khi đó, \({\overrightarrow m ^2} = {\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)^2}\)\( = {\overrightarrow a ^2} + {\overrightarrow b ^2} + {\overrightarrow c ^2} + 2\overrightarrow a \cdot \overrightarrow b + 2\overrightarrow b \cdot \overrightarrow c + 2\overrightarrow c \cdot \overrightarrow a \)
\( = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 0 + 2\left| {\overrightarrow b } \right| \cdot \left| {\overrightarrow c } \right| \cdot \cos \left( {\overrightarrow b ,\overrightarrow c } \right) + 2\left| {\overrightarrow c } \right| \cdot \left| {\overrightarrow a } \right| \cdot \cos \left( {\overrightarrow c ,\overrightarrow a } \right)\)
\( = {10^2} + {10^2} + {20^2} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }} + 2 \cdot 10 \cdot 20 \cdot \frac{1}{{\sqrt 3 }}\)
\( = 600 + \frac{{800}}{{\sqrt 3 }}\).
Suy ra \({\left| {\overrightarrow m } \right|^2} = {\overrightarrow m ^2} = 600 + \frac{{800}}{{\sqrt 3 }}\). Do đó, \(\left| {\overrightarrow m } \right| = \sqrt {600 + \frac{{800}}{{\sqrt 3 }}} \approx 32,6\).
Vậy độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng khoảng \(32,6\) N.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[ - \frac{1}{2}\].
Lời giải
Lời giải

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].
Ta có \[\alpha = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ - 60^\circ = 120^\circ \].
Suy ra \[\cos \alpha = \frac{{ - 1}}{2}\]. Chọn A.
Lời giải
Lời giải
Giả sử chi phí sản suất các mặt hình trụ là như nhau và các mép nối không đáng kể.
Ta có, thể tích hình trụ là \(V = \pi {r^2}h = 330{\rm{ (ml)}} = 330{\rm{ (c}}{{\rm{m}}^3}) \Rightarrow h = \frac{{330}}{{\pi {r^2}}}{\rm{ (cm)}}{\rm{.}}\)
Diện tích toàn phần của hộp đựng là: \(S\left( r \right) = 2\pi {r^2} + 2\pi r \cdot h = 2\pi {r^2} + \frac{{660}}{r}\).
Ta có \(S'\left( r \right) = 4\pi r - \frac{{660}}{{{r^2}}};\,\,S'\left( r \right) = 0 \Rightarrow {r^3} = \frac{{165}}{\pi } \Rightarrow r = \sqrt[3]{{\frac{{165}}{\pi }}}{\rm{ (cm)}}\).
Bảng biến thiên
![Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích \[330{\rm{ml}}.\] Tìm bán kính của hộp đựng để chi phí vật liệu dùng để sản xuất là nhỏ nhất (đơn vị: cm). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid13-1756132462.png)
Từ bảng biến thiên, ta kết luận \(r = \sqrt[3]{{\frac{{165}}{\pi }}}{\rm{ (cm)}}\) thì chi phí vật liệu dùng để sản xuất là nhỏ nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.