Câu hỏi:

25/08/2025 37 Lưu

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x - 2} \right)^2}\left( {{x^2} - 1} \right)\), \(\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là

A. \(0\).  

B. \[3\].  
C. \(1\). 
D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có , trong đó  và  là các nghiệm bội chẵn. \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 1\\x = 2\end{array} \right.\)

Do đó hàm số đã cho có 2 cực trị. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng. Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(BDD'B'\) là hình chữ nhật.

Suy ra \(\overrightarrow {BD}  = \overrightarrow {B'D'} \).

b) Đúng. Ta có: \(A'C' = \sqrt {A'{{B'}^2} + B'{{C'}^2}}  = \sqrt 2 \); \(A'C = \sqrt {A'{{C'}^2} + C{{C'}^2}}  = \sqrt 3 \).

Suy ra \(\left| {\overrightarrow {A'C} } \right| = A'C = \sqrt 3 \). Tương tự, \(\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt 3 \).

c) Đúng. Theo quy tắc hình hộp, ta có: \(\overrightarrow {A'C}  = \overrightarrow {A'B'}  + \overrightarrow {A'D'}  + \overrightarrow {A'A} \).

Mà \(\overrightarrow {A'B'}  = \overrightarrow {AB} ,\,\overrightarrow {A'D'}  = \overrightarrow {AD} ,\,\,\overrightarrow {A'A}  = \overrightarrow {D'D} \). Do đó, \(\overrightarrow {A'C}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {D'D} \).

d) Sai. Ta có: \(\overrightarrow {A'C}  \cdot \overrightarrow {BD}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {DD'} } \right) \cdot \left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

            \( = \overrightarrow {AB}  \cdot \overrightarrow {AD}  - {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2} - \overrightarrow {AD}  \cdot \overrightarrow {AB}  + \overrightarrow {DD'}  \cdot \overrightarrow {AD}  - \overrightarrow {DD'}  \cdot \overrightarrow {AB} \)

            \( = 0 - {1^2} + {1^2} - 0 + 0 - 0 = 0\).

Vậy \(\overrightarrow {A'C}  \cdot \overrightarrow {BD}  = 0\).

Câu 2

A. \[ - \frac{1}{2}\].             

B. \[\frac{1}{2}\].             
C. \[\frac{{\sqrt 3 }}{2}\].            
D. \[ - \frac{{\sqrt 3 }}{2}\].

Lời giải

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, \(SA = SB = AB\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {AS} \). Tính \(\cos \alpha \). (ảnh 1)

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].

Ta có \[\alpha  = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ  - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ  - 60^\circ  = 120^\circ \].

Suy ra \[\cos \alpha  = \frac{{ - 1}}{2}\]. Chọn A.

Câu 4

A. \[y = \frac{{{x^2} - 2x + 2}}{{x + 1}}\].   
B. \[y = \frac{{{x^2} + x + 1}}{{ - x + 1}}\]. 
C. \[y = \frac{{{x^2} - x + 1}}{{ - x + 1}}\].      
D. \[y = \frac{{ - {x^2} - x - 1}}{{2x - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP