Xác định giá trị lớn nhất của hàm số \(y = x + \frac{9}{{x - 1}}\) trên đoạn \(\left[ { - 4;\, - 1} \right]\).
Quảng cáo
Trả lời:
Lời giải
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có \(y' = 1 - \frac{9}{{{{\left( {x - 1} \right)}^2}}}\)\( \Rightarrow y' = 0 \Leftrightarrow 1 - \frac{9}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 9 \Leftrightarrow \left[ \begin{array}{l}x = 4 \notin \left[ { - 4;\, - 1} \right]\\x = - 2 \in \left[ { - 4;\, - 1} \right]\end{array} \right.\).
Ta thấy \(y\left( { - 4} \right) = - \frac{{29}}{5}\); \(y\left( { - 2} \right) = - 5\); \(y\left( { - 1} \right) = - \frac{{11}}{2}\). Vậy \(\mathop {\max y}\limits_{\left[ { - 4;\, - 1} \right]} = y\left( { - 2} \right) = - 5\).
Đáp án: \( - 5\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[ - \frac{1}{2}\].
Lời giải
Lời giải

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].
Ta có \[\alpha = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ - 60^\circ = 120^\circ \].
Suy ra \[\cos \alpha = \frac{{ - 1}}{2}\]. Chọn A.
Câu 2
Lời giải
Lời giải
Đồ thị hàm số có tiệm cận đứng \(x = 1\) nên loại A, D.
Đồ thị hàm số có tiệm cận xiên \(y = - x\) nên loại B. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![a) Hệ số \[a < 0\]. b) Đồ thị hàm số \(y = f\left( x \right)\) có điểm cực tiểu là \(\left( {1;\,3} \right)\). c) Hàm số đồng biến trên khoảng \(\left( { - 1;\,1} \right)\). d) \[f\left( 3 \right) = - 5\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/08/blobid10-1756132215.png)