Câu hỏi:

25/08/2025 49 Lưu

Cho hàm số phân thức: \[y = f\left( x \right) = \frac{{ - {x^2} + ax + b}}{{x - 1}}\] có đồ thị \(\left( C \right)\). Biết \(\left( C \right)\) đi qua điểm \(A\left( {0;5} \right)\) và nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng. Tính \(T = \frac{a}{b}\) (làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Vì \(A\left( {0;5} \right) \in \left( C \right)\) nên \(b =  - 5\). Suy ra \(f\left( x \right) = \frac{{ - {x^2} + ax - 5}}{{x - 1}}\).

Gọi \(A'\left( {{x_{A'}};{y_{A'}}} \right)\) là điểm đối xứng với \(A\left( {0;5} \right)\) qua điểm \(I\left( {1;1} \right)\), ta được: \(\left\{ \begin{array}{l}\frac{{{x_{A'}} + 0}}{2} = 1\\\frac{{{y_{A'}} + 5}}{2} = 1\end{array} \right.\).

Suy ra \(A'\left( {2; - 3} \right)\).

Vì \(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng nên \(A'\left( {2; - 3} \right) \in \left( C \right)\). Suy ra \(\frac{{ - {2^2} + 2a - 5}}{{2 - 1}} =  - 3 \Leftrightarrow a = 3\).

Vậy \(T = \frac{a}{b} = \frac{3}{{ - 5}} =  - 0,6\).

 Đáp án: \( - 0,6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng. Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(BDD'B'\) là hình chữ nhật.

Suy ra \(\overrightarrow {BD}  = \overrightarrow {B'D'} \).

b) Đúng. Ta có: \(A'C' = \sqrt {A'{{B'}^2} + B'{{C'}^2}}  = \sqrt 2 \); \(A'C = \sqrt {A'{{C'}^2} + C{{C'}^2}}  = \sqrt 3 \).

Suy ra \(\left| {\overrightarrow {A'C} } \right| = A'C = \sqrt 3 \). Tương tự, \(\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt 3 \).

c) Đúng. Theo quy tắc hình hộp, ta có: \(\overrightarrow {A'C}  = \overrightarrow {A'B'}  + \overrightarrow {A'D'}  + \overrightarrow {A'A} \).

Mà \(\overrightarrow {A'B'}  = \overrightarrow {AB} ,\,\overrightarrow {A'D'}  = \overrightarrow {AD} ,\,\,\overrightarrow {A'A}  = \overrightarrow {D'D} \). Do đó, \(\overrightarrow {A'C}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {D'D} \).

d) Sai. Ta có: \(\overrightarrow {A'C}  \cdot \overrightarrow {BD}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {DD'} } \right) \cdot \left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

            \( = \overrightarrow {AB}  \cdot \overrightarrow {AD}  - {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2} - \overrightarrow {AD}  \cdot \overrightarrow {AB}  + \overrightarrow {DD'}  \cdot \overrightarrow {AD}  - \overrightarrow {DD'}  \cdot \overrightarrow {AB} \)

            \( = 0 - {1^2} + {1^2} - 0 + 0 - 0 = 0\).

Vậy \(\overrightarrow {A'C}  \cdot \overrightarrow {BD}  = 0\).

Câu 2

Lời giải

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, \(SA = SB = AB\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {AS} \). Tính \(\cos \alpha \). (ảnh 1)

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].

Ta có \[\alpha  = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ  - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ  - 60^\circ  = 120^\circ \].

Suy ra \[\cos \alpha  = \frac{{ - 1}}{2}\]. Chọn A.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP