Câu hỏi:

25/08/2025 9 Lưu

Cho hàm số \[y = \frac{{2x - 1}}{{x - 2}}\]. Phương trình đường tiệm cận đứng của đồ thị hàm số là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} y =  + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, \(SA = SB = AB\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {AS} \). Tính \(\cos \alpha \). (ảnh 1)

Vì \[SA = SB = AB\] nên tam giác \[SAB\] đều, do đó \[\left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right) = 60^\circ \].

Ta có \[\alpha  = \left( {\overrightarrow {CD} ,\overrightarrow {AS} } \right) = \left( {\overrightarrow {BA} ,\overrightarrow {AS} } \right) = 180^\circ  - \left( {\overrightarrow {AB} ,\overrightarrow {AS} } \right)\]\[ = 180^\circ  - 60^\circ  = 120^\circ \].

Suy ra \[\cos \alpha  = \frac{{ - 1}}{2}\]. Chọn A.

Lời giải

Lời giải

Gọi \(x\,\,{\rm{(km/h)}}\) là vận tốc của tàu, \(x > 0\).

Thời gian tàu chạy quãng đường 1 km là: \(\frac{1}{x}\) (giờ).

Chi phí tiền nhiên liệu cho phần thứ nhất để tàu chạy 1 km là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\) (nghìn đồng).

Hàm chi phí cho phần thứ hai là \(p = k{x^2}\) (nghìn đồng/ giờ).

Khi \(x = 10,p = 10 \Rightarrow k = 0,1\) nên \(p = 0,1{x^2}\) (nghìn đồng/ giờ).

Do đó chi phí phần thứ hai để tàu chạy 1 km là: \(\frac{1}{x} \cdot 0,1{x^2} = 0,1x\) (nghìn đồng).

Vậy tổng chi phí nhiên liệu để tàu chạy 1 km đường sông: \(f\left( x \right) = \frac{{480}}{x} + 0,1x\) (nghìn đồng).

Thay \(x = v = 30\) (km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,1 \cdot 30 = 19\) (nghìn đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP