Câu hỏi:

26/08/2025 30 Lưu

Điểm nào sau đây thuộc đồ thị hàm số \(y = {x^4} - 2{x^2} - 1\)?

A. \(\left( { - 1; - 2} \right).\)   

B. \(\left( {2; - 7} \right).\)  
C. \(\left( {0;\,1} \right).\)   
D. \(\left( {1;2} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Thay tọa độ các điểm ở các đáp án A, B, C, D vào hàm số \(y = {x^4} - 2{x^2} - 1\), ta thấy đáp án A thỏa mãn.

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \(\overrightarrow {AD}  = \overrightarrow {BC} \) và \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).

Do đó \(\overrightarrow {AS}  \cdot \overrightarrow {BC}  = \overrightarrow {AS}  \cdot \overrightarrow {AD}  = \left| {\overrightarrow {AS} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {SAD} = AS \cdot AD \cdot \cos 60^\circ  = 2 \cdot 2 \cdot \frac{1}{2} = 2\).

Đáp án: 2.

Lời giải

Lời giải

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y = {x^3} + x + 1\)

            \(y' = 3{x^2} + 1 > 0,\forall x \in \mathbb{R}.\)

Vậy hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right).\) Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP