Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?
A. \(1\).
Quảng cáo
Trả lời:

Lời giải

Từ bảng biến thiên, ta thấy trục hoành (đường thẳng \(y = 0\)) cắt đồ thị hàm số đã cho tại \(4\) điểm. Chọn D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có \(\overrightarrow {AD} = \overrightarrow {BC} \) và \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).
Do đó \(\overrightarrow {AS} \cdot \overrightarrow {BC} = \overrightarrow {AS} \cdot \overrightarrow {AD} = \left| {\overrightarrow {AS} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {SAD} = AS \cdot AD \cdot \cos 60^\circ = 2 \cdot 2 \cdot \frac{1}{2} = 2\).
Đáp án: 2.
Lời giải
Lời giải
Tập xác định: \(D = \mathbb{R}\).
Ta có: \(y = {x^3} + x + 1\)
\(y' = 3{x^2} + 1 > 0,\forall x \in \mathbb{R}.\)
Vậy hàm số luôn đồng biến trên \(\left( { - \infty ; + \infty } \right).\) Chọn D.
Câu 3
A. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(y = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.