Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x + 1}}{{2x - 1}}\), gọi \(I\) là giao điểm của đường tiện cận đứng và đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\), tổng hoành độ và tung độ của điểm \(I\) bằng bao nhiêu (viết kết quả dưới dạng số thập phân)?
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x + 1}}{{2x - 1}}\), gọi \(I\) là giao điểm của đường tiện cận đứng và đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\), tổng hoành độ và tung độ của điểm \(I\) bằng bao nhiêu (viết kết quả dưới dạng số thập phân)?
Quảng cáo
Trả lời:

Lời giải
Ta có \(\mathop {\lim }\limits_{x \to {{\left( {\frac{1}{2}} \right)}^ + }} \frac{{{x^2} - 3x + 1}}{{2x - 1}} = - \infty \), suy ra đường thẳng \(x = \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\).
Ta có \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 1}}{{2{x^2} - x}} = \frac{1}{2}\);
\(b = \mathop {\lim }\limits_{x \to + \infty } \left( {f\left( x \right) - ax} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} - 3x + 1}}{{2x - 1}} - \frac{1}{2}x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 5x + 2}}{{4x - 2}} = - \frac{5}{4}\).
Suy ra đường thẳng \(y = \frac{1}{2}x - \frac{5}{4}\) là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\).
Vậy điểm \(I\left( {\frac{1}{2};\, - 1} \right)\), khi đó \(\frac{1}{2} + \left( { - 1} \right) = - \frac{1}{2} = - 0,5\).
Đáp án: \( - 0,5\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi \({A_1},\,{B_1},\,{C_1}\) lần lượt là các điểm sao cho \(\overrightarrow {O{A_1}} = \overrightarrow {{F_1}} ,\,\,\overrightarrow {O{B_1}} = \overrightarrow {{F_2}} ,\,\overrightarrow {O{C_1}} = \overrightarrow {{F_3}} \). Lấy các điểm \({D_1},{A'_1},\,{B'_1},\,{D'_1}\) sao cho \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình hộp như hình dưới đây.

Theo quy tắc hình hộp, ta có: \(\overrightarrow {O{A_1}} + \overrightarrow {O{B_1}} + \overrightarrow {O{C_1}} = \overrightarrow {O{{D'}_1}} \).
Mặt khác, do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) đôi một vuông góc và \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = 15\) (N) nên hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) có ba cạnh \(O{A_1},\,O{B_1},\,O{C_1}\) đôi một vuông góc và bằng nhau.
Do đó, hình hộp \(O{A_1}{D_1}{B_1}.{C_1}{A'_1}{D'_1}{B'_1}\) là hình lập phương có độ dài cạnh bằng 15.
Suy ra độ dài đường chéo của hình lập phương đó bằng \(15\sqrt 3 \).
Do chiếc đèn ở vị trí cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \), ở đó \(\overrightarrow P \) là trọng lực tác dụng lên chiếc đèn.
Vậy trọng lượng của chiếc đèn là \(\left| {\overrightarrow P } \right| = \left| {\overrightarrow {O{{D'}_1}} } \right| = 15\sqrt 3 \) (N).
Lời giải
Lời giải
Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).

Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.
Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}\) dm.
Đường cao của hình chóp tứ giác đều là:
\(h = AO = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \) (dm).
Thể tích của khối chóp là: \(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).
Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) = \frac{{1\,492\,992}}{{3125}}\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} = \frac{1}{3}\sqrt {\frac{{1\,492\,992}}{{3125}}} = \frac{{288\sqrt {10} }}{{125}}\) (dm3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.