Câu hỏi:

26/08/2025 31 Lưu

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). \(G\) là điểm thỏa mãn \(\overrightarrow {GS}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {SO} \).  b) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \). (ảnh 1)

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {SO} \).

b) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

c) \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \).

d) \(\overrightarrow {GS}  = 3\overrightarrow {OG} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {SO} \).  b) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \). (ảnh 2)

a) Sai. Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow {AA}  = \overrightarrow 0 \).

b) Đúng. Vì \(O\) là tâm hình bình hành \(ABCD\) nên \(O\) là trung điểm của \(AC\) và \(BD\).

Khi đó, \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\,\,\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \), suy ra \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

c) Đúng. Ta có \(\left\{ \begin{array}{l}\overrightarrow {SB}  + \overrightarrow {SD}  = 2\overrightarrow {SO} \\\overrightarrow {SA}  + \overrightarrow {SC}  = 2\overrightarrow {SO} \end{array} \right.\), do đó \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \).

d) Sai. Ta có \(\overrightarrow {GS}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GS}  + \left( {\overrightarrow {GO}  + \overrightarrow {OA} } \right) + \left( {\overrightarrow {GO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {GO}  + \overrightarrow {OC} } \right) + \left( {\overrightarrow {GO}  + \overrightarrow {OD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GS}  + 4\overrightarrow {GO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GS}  + 4\overrightarrow {GO}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {GS}  = 4\overrightarrow {OG} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) =  + \infty \) nên đường tiệm cận đứng của đồ thị hàm số là \(x = 1\).

Lại có \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2\) nên đồ thị hàm số có hai đường tiệm cận ngang là \(y = 2\) và\(y = 5\).

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 3. Chọn A.

Lời giải

Lời giải

Ta có \(\overrightarrow {AD}  = \overrightarrow {BC} \) và \(\left( {\overrightarrow {AS} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AS} ,\overrightarrow {AD} } \right) = \widehat {SAD} = 60^\circ \).

Do đó \(\overrightarrow {AS}  \cdot \overrightarrow {BC}  = \overrightarrow {AS}  \cdot \overrightarrow {AD}  = \left| {\overrightarrow {AS} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {SAD} = AS \cdot AD \cdot \cos 60^\circ  = 2 \cdot 2 \cdot \frac{1}{2} = 2\).

Đáp án: 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP