Câu hỏi:

26/08/2025 18 Lưu

Đẳng thức đúng là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Xét các đáp án, ta có:

\(27 + 27x + 9{x^2} + {x^3} = {3^3} + 3 \cdot {3^2} \cdot x + 3 \cdot 3 \cdot {x^2} + {x^3} = {\left( {3 + x} \right)^3}\). Do đó, đáp án A là đúng.

\({x^3} - 3{x^2} + 3x - 1 = {\left( {x - 1} \right)^3}.\) Do đó, đáp án B là sai.

\(1 - 2y + {y^2} = {\left( {y - 1} \right)^2}.\) Do đó, đáp án C là sai.

\(1 - {x^2}{y^4} = \left( {1 - x{y^2}} \right)\left( {1 + x{y^2}} \right)\). Do đó, đáp án D là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Đúng

Chiều rộng của thửa ruộng hình chữ nhật này là  \(\frac{1}{2}.20 = 10\) (m).

Diện tích của thửa ruộng hình chữ nhật đó là: \(10 \cdot 20 = 200\) (m2).

b) Đúng

Chiều dài của thửa ruộng sau khi giảm  \(x{\rm{ }}\left( {\rm{m}} \right)\)\(20 - x{\rm{ }}\left( {\rm{m}} \right)\).

Chiều rộng của thửa ruộng sau khi tăng \(x{\rm{ }}\left( {\rm{m}} \right)\)\(10 + x{\rm{ }}\left( {\rm{m}} \right)\).

Do đó, diện tích của thửa ruộng sau khi thay đổi chiều dài, chiều rộng là \(\left( {20 - x} \right)\left( {10 + x} \right){\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

c) Đúng

Nhận thấy, \(S = \left( {20 - x} \right)\left( {10 + x} \right) = - {x^2} + 10x + 200 = - {\left( {x - 5} \right)^2} + 225\).

Nhận thấy \( - {\left( {x - 5} \right)^2} + 225 \le 225\) với mọi \(x\) hay giá trị lớn nhất của \(S = 225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\)

d) Sai

Từ trên, nhận thấy diện tích thửa ruộng đạt giá trị lớn nhất bằng \(225{\rm{ }}\left( {{{\rm{m}}^2}} \right)\) khi \( - {\left( {x - 5} \right)^2} = 0\).

Suy ra \(x = 5.\)

Lời giải

Lời giải

Đáp án: \(0,5\)

Ta có: \(A = {x^3} + {y^3} + xy = \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) + xy = {x^2} - xy + {y^2} + xy = {x^2} + {y^2}\) (do \(x + y = 1\)).

Vì \(x + y = 1\) nên \(y = 1 - x\), thay vào \(A\) ta được:

\(A = {x^2} + {\left( {1 - x} \right)^2} = {x^2} + {x^2} - 2x + 1 = 2\left( {{x^2} - x} \right) + 1 = 2{\left( {x - \frac{1}{2}} \right)^2} + \frac{1}{2} \ge \frac{1}{2}\) hay \(A \ge 0,5.\)

Do đó, giá trị nhỏ nhất của \(A = 0,5\) khi \(x = \frac{1}{2},y = \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP