Câu hỏi:

11/09/2025 33 Lưu

Cho hình chóp \(S.ABC\)\(SA = SB = SC = AB = AC = 1\)\(BC = \sqrt 2 \).

A triangle with a line and a point

Description automatically generated with medium confidence

a) \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SC} \).

b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = \sqrt 2 \).

c) \(\overrightarrow {SC} \cdot \overrightarrow {AB} = \frac{1}{2}\).

d) \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{1}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SB} + \overrightarrow {BC} = \overrightarrow {SC} \).

b) Sai. Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \).

c) Sai. Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)\(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ - \widehat {SAB} = 120^\circ \).

Ta có: \[\overrightarrow {SC} \cdot \overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB} = \overrightarrow {SA} \cdot \overrightarrow {AB} + \overrightarrow {AC} \cdot \overrightarrow {AB} \]

\( = \overrightarrow {SA} \cdot \overrightarrow {AB} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ = - \frac{1}{2}\).

d) Sai. Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} = - \frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).

Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).

Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\)\(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên

\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).

Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).

Lời giải

Từ phương trình \(\frac{1}{3}f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 3\).

Dựa vào BBT, đường thẳng \(y = - 3\) cắt đồ thị hàm số tại 2 điểm, nên phương trình có 2 nghiệm phân biệt.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {CD} \).                                       

B. \(\overrightarrow {AB} \).   

C. \(\overrightarrow {CI} \).     
D. \(\overrightarrow {BI} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {1;2} \right)\).       

B. \(\left( { - 2; - 1} \right)\).     
C. \(\left( { - 1;0} \right)\).                                          
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP