Câu hỏi:

11/09/2025 37 Lưu

Cho hình chóp \(S.ABC\). Trên cạnh \(SA\), lấy điểm \(M\) sao cho \(SM = 2AM\). Trên cạnh \(BC\), lấy điểm \(N\) sao cho \(CN = 2BN\). Khi đó \(\overrightarrow {MN} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{b}\overrightarrow {SC} \) với \(\,\frac{a}{b},\frac{c}{b}\) là các phân số tối giản. Tổng \(a + b + c\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} \Rightarrow 2\overrightarrow {MN} = 2\overrightarrow {MA} + 2\overrightarrow {AB} + 2\overrightarrow {BN} \].

Lại có \[\overrightarrow {MN} = \overrightarrow {MS} + \overrightarrow {SC} + \overrightarrow {CN} \].

Suy ra \(3\overrightarrow {MN} = \left( {2\overrightarrow {MA} + \overrightarrow {MS} } \right) + \left( {2\overrightarrow {BN} + \overrightarrow {CN} } \right) + 2\overrightarrow {AB} + \overrightarrow {SC} = 2\overrightarrow {AB} + \overrightarrow {SC} \).

Khi đó, \[\overrightarrow {MN} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {SC} \Rightarrow a = 2,b = 3,\,c = 1 \Rightarrow a + b + c = 6\].

Đáp án: 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow P = m\overrightarrow g \) nên \(P = \left| {\overrightarrow P } \right| = m \cdot \left| {\overrightarrow g } \right| = 10\) (N).

Bóng đèn ở vị trí cân bằng nên \(\overrightarrow P + \overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow 0 \) hay \(\overrightarrow P = - \overrightarrow {T'} \) với \(\overrightarrow {T'} = \overrightarrow {{T_1}} + \overrightarrow {{T_2}} \).

Suy ra \(T' = P = 10\,{\rm{N}}\). Vì \({T_1} = {T_2}\)\(\left( {\overrightarrow {{T_1}} ,\,\overrightarrow {{T_2}} } \right) = 60^\circ \) nên

\(\frac{{T'}}{2} = {T_1} \cdot \cos 30^\circ \Rightarrow {T_1} = \frac{{10}}{{\sqrt 3 }} = \frac{{10\sqrt 3 }}{3}\) (N).

Vậy lực căng của mỗi nửa sợi dây là \(\frac{{10\sqrt 3 }}{3}\,{\rm{N}}\).

Lời giải

Từ phương trình \(\frac{1}{3}f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 3\).

Dựa vào BBT, đường thẳng \(y = - 3\) cắt đồ thị hàm số tại 2 điểm, nên phương trình có 2 nghiệm phân biệt.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {CD} \).                                       

B. \(\overrightarrow {AB} \).   

C. \(\overrightarrow {CI} \).     
D. \(\overrightarrow {BI} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {1;2} \right)\).       

B. \(\left( { - 2; - 1} \right)\).     
C. \(\left( { - 1;0} \right)\).                                          
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP