PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ bên dưới.
Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng nào dưới đây?
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ bên dưới.

Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng nào dưới đây?
Quảng cáo
Trả lời:

Hàm số đồng biến trên các khoảng \[\left( { - \infty ; - 2} \right)\] và \[\left( {3; + \infty } \right)\]. Chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(\overrightarrow {AB} = \overrightarrow {A'B'} = \overrightarrow {D'C'} = \overrightarrow {DC} \).
b) Sai. Vì \(\overrightarrow {A'B'} = \overrightarrow {AB} \) (do \(ABB'A'\) là hình bình hành), \[\overrightarrow {B'M} = \frac{1}{2}\overrightarrow {B'C'} = \frac{1}{2}\overrightarrow {AD} \] (do \(M\) là trung điểm của \(B'C'\), và \(ADC'B'\) là hình bình hành).
Nên ta có: \(\overrightarrow {AM} = \overrightarrow {AA'} + \overrightarrow {A'B'} + \overrightarrow {B'M} = \overrightarrow {AA'} + \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
c) Đúng. Ta có: \(3\overrightarrow {AG} = \overrightarrow {AD} + \overrightarrow {AD'} + \overrightarrow {AC'} \) (vì \(G\) là trọng tâm tam giác \(DC'D'\)).
Mà \(\overrightarrow {AD'} = \overrightarrow {AA'} + \overrightarrow {AD} \) (vì \(ADD'A'\) là hình bình hành), \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \) (do \(ABCD.A'B'C'D'\) là hình hộp).
Nên \(3\overrightarrow {AG} = \overrightarrow {AB} + 2\overrightarrow {AA'} + 3\overrightarrow {AD} \Rightarrow \overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AA'} + \overrightarrow {AD} \).
Bình phương 2 vế và lưu ý \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc) ta có:
\(A{G^2} = \frac{1}{9}A{B^2} + \frac{4}{9}A{A'^2} + A{D^2} = \frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}\)\( \Rightarrow AG = \sqrt {\frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}} \).
d) Sai. Vì \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc).
Nên ta có: \(\overrightarrow {AM} \cdot \overrightarrow {AG} = \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \overrightarrow {AA'} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right)\)
\( = \frac{1}{3}A{B^2} + \frac{1}{2}A{D^2} + \frac{2}{3}A{A'^2}\)\( = \frac{1}{3}{a^2} + \frac{1}{2}{b^2} + \frac{2}{3}{c^2}\).
Lời giải
Theo hình vẽ ta có các vectơ \[\overrightarrow {AS} ,\,\overrightarrow {BS} ,\,\overrightarrow {CS} ,\,\overrightarrow {DS} \] biểu thị các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \).
Khi đó, \(\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} = \overrightarrow {AS} + \,\overrightarrow {BS} + \,\overrightarrow {CS} + \,\overrightarrow {DS} \)
\( = - \left( {\overrightarrow {SA} + \,\overrightarrow {SB} + \,\overrightarrow {SC} + \,\overrightarrow {SD} } \right) = - \left[ {\left( {\overrightarrow {SA} + \,\overrightarrow {SC} } \right) + \,\left( {\overrightarrow {SB} + \,\overrightarrow {SD} } \right)} \right]\)
\( = - \left( {2\overrightarrow {SO} + 2\overrightarrow {SO} } \right) = - 4\overrightarrow {SO} \).
Vì các đoạn dây cáp có độ dài bằng nhau và góc tạo bởi hai đoạn dây cáp đối diện nhau là 60° nên tam giác \[SAC\] cân và \[\widehat {ASC} = 60^\circ \], do đó tam giác \[SAC\] đều, suy ra \[SO = SA \cdot \frac{{\sqrt 3 }}{2}\].
Khi đó, \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| = 4SO = 4 \cdot SA \cdot \frac{{\sqrt 3 }}{2} = 4 \cdot 5\,000 \cdot \frac{{\sqrt 3 }}{2} = 10\,000\sqrt 3 \,\,{\rm{(N)}}{\rm{.}}\)
Ta có \[\overrightarrow P = m \cdot \overrightarrow g \], suy ra \[P = m \cdot g = 10m\].
Để cần cẩu nâng được thùng hàng thì \(\left| {\overrightarrow {{F_1}} + \,\overrightarrow {{F_2}} + \,\overrightarrow {{F_3}} + \,\overrightarrow {{F_4}} } \right| \ge P\).
Suy ra \(10\,000\sqrt 3 \ge 10m \Rightarrow m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Vậy \(m \le 1\,000\sqrt 3 \,\,{\rm{(kg)}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.