PHẦN II. TỰ LUẬN
Cho hai vị trí \[A,B\] cách nhau \[615\,{\rm{m}}\], cùng nằm về một phía bờ sông. Khoảng cách từ \[A\] và \[B\] đến bờ sông lần lượt là \[118\,{\rm{m}}\] và \[487\,{\rm{m}}\]. Một người đi từ \[A\] đến bờ sông để lấy nước mang về \[B\]. Xác định độ dài đoạn đường ngắn nhất mà người đó có thể đi.
PHẦN II. TỰ LUẬN
Cho hai vị trí \[A,B\] cách nhau \[615\,{\rm{m}}\], cùng nằm về một phía bờ sông. Khoảng cách từ \[A\] và \[B\] đến bờ sông lần lượt là \[118\,{\rm{m}}\] và \[487\,{\rm{m}}\]. Một người đi từ \[A\] đến bờ sông để lấy nước mang về \[B\]. Xác định độ dài đoạn đường ngắn nhất mà người đó có thể đi.
Quảng cáo
Trả lời:

Gọi \[E,F\] là hình chiếu của \[A,B\] trên bờ sông. \[D\] là hình chiếu của \[A\] trên \[BF\].
Áp dụng định lí Pythagore trong tam giác \[ADB\] ta có
\[AD = \sqrt {A{B^2} - B{D^2}} = \sqrt {{{615}^2} - {{\left( {487 - 118} \right)}^2}} = 492\,\,{\rm{m}}\].
Đặt \[EM = x\,\left( {0 \le x \le 492} \right)\] ta có quãng đường mà người đi lấy nước phải đi là
\[S = AM + MB = \sqrt {{{118}^2} + {x^2}} + \sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} = \sqrt {{{118}^2} + {x^2}} + \sqrt {{x^2} - 984x + 479233} \].
Ta cần tìm giá trị nhỏ nhất của hàm số \[f\left( x \right) = \sqrt {{{118}^2} + {x^2}} + \sqrt {{x^2} - 984x + 479233} \] trên đoạn \[\left[ {0;492} \right]\].
Cách 1: Sử dụng máy tính dừng chức năng TABLE thu được \[\mathop {{\rm{min}}}\limits_{\left[ {0;492} \right]} f\left( x \right) = 779,8\,{\rm{m}}\].
Cách 2: Ta có \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} + \frac{{x - 492}}{{\sqrt {{x^2} - 984x + 479233} }}\]
\[f'\left( x \right) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{x^2} - 984x + 479233} }} \Rightarrow 223245{x^2} + 13701216x - 13924 \cdot 242064 = 0\]
\[ \Rightarrow \left[ \begin{array}{l}x = \frac{{58056}}{{605}}\\x = - \frac{{472}}{3}\;\left( l \right)\end{array} \right. \Rightarrow x = \frac{{58056}}{{605}}\].
Ta có BBT:

Vậy \[\mathop {{\rm{min}}}\limits_{\left[ {0;492} \right]} f\left( x \right) = f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\,{\rm{m}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(\overrightarrow {AB} = \overrightarrow {A'B'} = \overrightarrow {D'C'} = \overrightarrow {DC} \).
b) Sai. Vì \(\overrightarrow {A'B'} = \overrightarrow {AB} \) (do \(ABB'A'\) là hình bình hành), \[\overrightarrow {B'M} = \frac{1}{2}\overrightarrow {B'C'} = \frac{1}{2}\overrightarrow {AD} \] (do \(M\) là trung điểm của \(B'C'\), và \(ADC'B'\) là hình bình hành).
Nên ta có: \(\overrightarrow {AM} = \overrightarrow {AA'} + \overrightarrow {A'B'} + \overrightarrow {B'M} = \overrightarrow {AA'} + \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} \).
c) Đúng. Ta có: \(3\overrightarrow {AG} = \overrightarrow {AD} + \overrightarrow {AD'} + \overrightarrow {AC'} \) (vì \(G\) là trọng tâm tam giác \(DC'D'\)).
Mà \(\overrightarrow {AD'} = \overrightarrow {AA'} + \overrightarrow {AD} \) (vì \(ADD'A'\) là hình bình hành), \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \) (do \(ABCD.A'B'C'D'\) là hình hộp).
Nên \(3\overrightarrow {AG} = \overrightarrow {AB} + 2\overrightarrow {AA'} + 3\overrightarrow {AD} \Rightarrow \overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AA'} + \overrightarrow {AD} \).
Bình phương 2 vế và lưu ý \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc) ta có:
\(A{G^2} = \frac{1}{9}A{B^2} + \frac{4}{9}A{A'^2} + A{D^2} = \frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}\)\( \Rightarrow AG = \sqrt {\frac{1}{9}{a^2} + \frac{4}{9}{c^2} + {b^2}} \).
d) Sai. Vì \(\overrightarrow {AB} \cdot \overrightarrow {AA'} = \overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AD} \cdot \overrightarrow {AA'} = 0\) (các vectơ đôi một vuông góc).
Nên ta có: \(\overrightarrow {AM} \cdot \overrightarrow {AG} = \left( {\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \overrightarrow {AA'} } \right) \cdot \left( {\frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {AA'} } \right)\)
\( = \frac{1}{3}A{B^2} + \frac{1}{2}A{D^2} + \frac{2}{3}A{A'^2}\)\( = \frac{1}{3}{a^2} + \frac{1}{2}{b^2} + \frac{2}{3}{c^2}\).
Lời giải
Gọi \(x\,\left( {{\rm{cm}}} \right)\) là cạnh đáy của chiếc thùng \(\,\left( {x > 0} \right)\).
Khi đó diện tích đáy thùng là \(x{\,^2}\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Vì thể tích thùng là \(2000\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\) nên chiều cao hộp là \(h = \frac{{2000}}{{{x^2}}}\,\,\left( {{\rm{cm}}} \right)\).
Tổng diện tích các bề mặt của chiếc thùng là: \(S = 2{x^2} + 4xh = \,\,2{x^2} + \frac{{8000}}{x}\,\,\,\left( {x > 0} \right)\).
Ta có \(S' = 4x - \frac{{8000}}{{{x^2}}}\,\, = \frac{{4{x^3} - 8000}}{{{x^2}}};\,\,\,S'\, = 0 \Leftrightarrow x = 10\sqrt[3]{2}\).
Bằng cách bảng biến thiên, dễ thấy diện tích bề mặt thùng nhỏ nhất khi cạnh đáy của thùng là \(10\sqrt[3]{2}\) và chiều cao của thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\).
Vậy nguyên liệu để sản xuất chiếc thùng là ít nhất khi chiều cao thùng là \(\frac{{20}}{{\sqrt[3]{4}}}\,\,{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




