Câu hỏi:

31/08/2025 311 Lưu

Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(2; 3; −1), N(−1; 1; 1), P(1; m – 1; 2). Tìm m để tam giác MNP vuông tại N.

A.

m = 2.

B.

m = −6.

C.

m = 0.

D.

m = −4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C

Ta có \(\overrightarrow {NM} = \left( {3;2; - 2} \right),\overrightarrow {NP} = \left( {2;m - 2;1} \right)\).

Để tam giác MNP vuông tại N thì \(\overrightarrow {NM} .\overrightarrow {NP} = 2.3 + 2.\left( {m - 2} \right) + \left( { - 2} \right).1 = 0\)\( \Leftrightarrow m = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(\overrightarrow {MN} = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).

Do đó a + b + c = 1485.

Trả lời: 1485.

Lời giải

a) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\).

b) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 2 + 0}}{3}\\{y_G} = \frac{{ - 2 + 1 + 3}}{3}\\{z_G} = \frac{{0 + \left( { - 2} \right) + 4}}{3}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 1\\{y_G} = \frac{2}{3}\\{z_G} = \frac{2}{3}\end{array} \right.\)\( \Rightarrow G\left( {1;\frac{2}{3};\frac{2}{3}} \right)\).

c) Hình chiếu của B trên mặt phẳng Oxy là (2; 1; 0).

d) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\); \(\overrightarrow {BC} = \left( { - 2;2;6} \right)\).

\(\overrightarrow x = 2\overrightarrow {AB} - 3\overrightarrow {BC} \) = (2.1 – 3.(−2); 2.3 – 3.2; 2.(−2) – 3.6) = (8; 0; −22).

Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.