Trong không gian với hệ tọa độ \[Oxyz\], cho \[\overrightarrow {OM} = \left( {1;5;2} \right)\], \[\overrightarrow {ON} = \left( {3;7; - 4} \right)\], \(K\left( { - 1;3;1} \right)\). Gọi \[P\] là điểm đối xứng với \[M\] qua \[N\]. Tìm tọa độ vectơ \[\overrightarrow {KP} \].
\(\overrightarrow {KP} = \left( {6;6; - 11} \right)\).
\[\overrightarrow {KP} = \left( {8;6; - 11} \right)\].
\[\overrightarrow {KP} = \left( {6;6; - 4} \right)\].
\[\overrightarrow {KP} = \left( {3;3; - 2} \right)\].
Quảng cáo
Trả lời:
Đáp án đúng: A
Ta có: \[\overrightarrow {OM} = \left( {1;5;2} \right) \Rightarrow M\left( {1;5;2} \right)\], \[\overrightarrow {ON} = \left( {3;7; - 4} \right) \Rightarrow N\left( {3;7; - 4} \right)\].
Vì \[P\] là điểm đối xứng với \[M\]qua \[N\] nên \[N\] là trung điểm của \(MP\), ta suy ra được
\(\overrightarrow {MN} = \overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}{x_N} - {x_M} = {x_P} - {x_N}\\{y_N} - {y_M} = {y_P} - {y_N}\\{z_N} - {z_M} = {z_P} - {z_N}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_P} = 5\\{y_P} = 9\\{z_P} = - 10\end{array} \right. \Rightarrow P\left( {5;9; - 10} \right)\).
Khi đó \[\overrightarrow {KP} = \left( {6;6; - 11} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề ta có \(\overrightarrow {MN} = 2\overrightarrow {NP} \)\( \Leftrightarrow \left\{ \begin{array}{l}200 = 2\left( {a - 800} \right)\\100 = 2\left( {b - 500} \right)\\10 = 2\left( {c - 30} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 900\\b = 550\\c = 35\end{array} \right.\).
Do đó a + b + c = 1485.
Trả lời: 1485.
Lời giải
a) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\).
b) \(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 2 + 0}}{3}\\{y_G} = \frac{{ - 2 + 1 + 3}}{3}\\{z_G} = \frac{{0 + \left( { - 2} \right) + 4}}{3}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}{x_G} = 1\\{y_G} = \frac{2}{3}\\{z_G} = \frac{2}{3}\end{array} \right.\)\( \Rightarrow G\left( {1;\frac{2}{3};\frac{2}{3}} \right)\).
c) Hình chiếu của B trên mặt phẳng Oxy là (2; 1; 0).
d) Ta có \(\overrightarrow {AB} = \left( {1;3; - 2} \right)\); \(\overrightarrow {BC} = \left( { - 2;2;6} \right)\).
\(\overrightarrow x = 2\overrightarrow {AB} - 3\overrightarrow {BC} \) = (2.1 – 3.(−2); 2.3 – 3.2; 2.(−2) – 3.6) = (8; 0; −22).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\left( {\frac{7}{3}; - \frac{5}{3};\frac{8}{3}} \right)\).
(4; 5; −9).
\(\left( {\frac{3}{2}; - 5;\frac{{17}}{2}} \right)\).
(1; −7; 12).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.