CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các góc lượng giác cần tìm có dạng \(\frac{\pi }{5} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Ta có \[\frac{{6\pi }}{5} = \frac{\pi }{5} + \pi \]; \[ - \frac{{11\pi }}{5} = - \frac{\pi }{5} - 2\pi \]; \[\frac{{9\pi }}{5} = \frac{{4\pi }}{5} + \pi \]; \[\frac{{31\pi }}{5} = \frac{\pi }{5} + 6\pi \]. Chọn D.

Lời giải

a) Đúng. Phương trình có nghĩa khi \(1 + \sin 3x \ne 0 \Leftrightarrow \sin 3x \ne - 1\).

b) Đúng. Với điều kiện phương trình có nghĩa: \[\frac{{\cos 3x}}{{1 + \sin 3x}} = 0 \Leftrightarrow \cos 3x = 0\].

c) Đúng. Với \(x = \frac{{5\pi }}{6}\), ta có \[\frac{{\cos \left( {3 \cdot \frac{{5\pi }}{6}} \right)}}{{1 + \sin \left( {3 \cdot \frac{{5\pi }}{6}} \right)}} = \frac{0}{2} = 0\]. Vậy \(x = \frac{{5\pi }}{6}\) là một nghiệm của phương trình đã cho.

d) Sai. Với điều kiện: \(\sin 3x \ne - 1\), ta có \[\frac{{\cos 3x}}{{1 + \sin 3x}} = 0 \Leftrightarrow \cos 3x = 0\].

\({\sin ^2}3x + {\cos ^2}3x = 1\) nên \(\cos 3x = 0 \Rightarrow {\sin ^2}3x = 1\)\( \Leftrightarrow \left[ \begin{array}{l}\sin 3x = 1\\\sin 3x = - 1\end{array} \right.\).

Kết hợp điều kiện \(\sin 3x \ne - 1\), ta được \(\sin 3x = 1\)\( \Leftrightarrow 3x = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{6} + k\frac{{2\pi }}{3}\).

Theo giả thiết ta có \(x > 0 \Leftrightarrow \frac{\pi }{6} + k\frac{{2\pi }}{3} > 0\)\( \Leftrightarrow k > - \frac{1}{4}\). Do \(k \in \mathbb{Z}\) nên \({k_{\min }} = 0\).

Khi đó nghiệm dương nhỏ nhất của phương trình đã cho là \(x = \frac{\pi }{6}\).

\( \Rightarrow a = 1;b = 6 \Rightarrow {a^2} + 2b = 13\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP