Câu hỏi:

04/09/2025 42 Lưu

C. TRẢ LỜI NGẮN. Thí sinh trả lời câu 1 đến câu 4.

Cho \(x \in \left( {0;\frac{\pi }{2}} \right)\) thỏa mãn \(\cos x = \frac{3}{5}\). Tính giá trị của \(\tan \left( {x + \frac{\pi }{4}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x \Rightarrow {\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1 \Rightarrow \tan x = \pm \sqrt {\frac{1}{{{{\left( {\frac{3}{5}} \right)}^2}}} - 1} = \pm \frac{4}{3}\).

\(x \in \left( {0;\frac{\pi }{2}} \right) \Rightarrow \tan \alpha = \frac{4}{3}\).

Khi đó, \(\tan \left( {x + \frac{\pi }{4}} \right) = \frac{{\tan x + \tan \frac{\pi }{4}}}{{1 - \tan x.\tan \frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} = - 7\).

Đáp án: −7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2\sin a \cdot \cos a\). 
B. \(2\sin 2a \cdot \cos 2a\).                                        
C. \(4sina\).                       
D. \(\frac{1}{2}\sin 2a \cdot \cos 2a\).

Lời giải

Ta có \(\sin 4a = 2\sin 2a \cdot \cos 2a\) (công thức nhân đôi). Chọn B.

Câu 2

A. 1.                                   
B. 0.                                   
C. 2.  
D. Vô số.

Lời giải

Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt không thẳng hàng. Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = \sin 4x\).               
B. \(y = \cot x\).                
C. \(y = \sin x\).                                          
D. \(y = \cos x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP