Cho \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\). Rút gọn biểu thức \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}.\)
Cho \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\). Rút gọn biểu thức \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}.\)
Quảng cáo
Trả lời:
Đáp án: 1
Ta có: \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\)
\({a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right) = {a^2} + {b^2} + {c^2}\)
Suy ra \(2\left( {ab + bc + ac} \right) = 0\) hay \(ab + bc + ac = 0\).
Xét \({a^2} + 2bc = {a^2} + 2bc - ab - bc - ca = {a^2} - ab - ca + bc = \left( {a - b} \right)\left( {a - c} \right)\).
Tương tự ta có \({b^2} + 2ac = \left( {b - a} \right)\left( {b - c} \right);{\rm{ }}{c^2} + 2ab = \left( {c - a} \right)\left( {c - b} \right)\).
Do đó, ta có: \(P = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ac}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\)
\( = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}} + \frac{{{c^2}}}{{\left( {c - a} \right)\left( {c - b} \right)}}\)
\( = - \frac{{{a^2}\left( {b - c} \right) + {b^2}\left( {c - a} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = - \frac{{{a^2}b - {a^2}c + {b^2}c - {b^2}a + {c^2}a - {c^2}b}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = - \frac{{ab\left( {a - b} \right) - \left( {{a^2} - {b^2}} \right)c + {c^2}\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = - \frac{{\left( {a - b} \right)\left( {ab - ac - bc + {c^2}} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = - \frac{{\left( {a - b} \right)\left[ {a\left( {b - c} \right) - c\left( {b - c} \right)} \right]}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = - \frac{{\left( {a - b} \right)\left( {b - c} \right)\left( {a - c} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}\)
\( = \frac{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}} = 1\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có: \(\frac{{4{x^2}}}{{x - 2}} - A = \frac{{ - 3}}{{x - 2}} + \frac{{ - 19}}{{2 - x}}\)
Suy ra \(A = \frac{{4{x^2}}}{{x - 2}} + \frac{3}{{x - 2}} + \frac{{19}}{{2 - x}}\)
\( = \frac{{4{x^2}}}{{x - 2}} + \frac{3}{{x - 2}} - \frac{{19}}{{x - 2}}\)
\( = \frac{{4{x^2} + 3 - 19}}{{x - 2}}\)
\( = \frac{{4{x^2} - 16}}{{x - 2}}\)
\( = \frac{{4\left( {{x^2} - 4} \right)}}{{x - 2}}\)
\( = \frac{{4\left( {x - 2} \right)\left( {x + 2} \right)}}{{x - 2}}\)
\( = 4\left( {x + 2} \right)\).
Câu 2
Lời giải
Đáp án đúng là: A
Phân thức đối của phân thức \(\frac{2}{{x - 5}}\) là \( - \frac{2}{{x - 5}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.