Thực hiện phép tính \(\frac{{ - x - 1}}{{3x + 1}}:\frac{{{x^2} - 1}}{{9{x^2} - 1}}\) ta được kết quả là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \(\frac{{ - x - 1}}{{3x + 1}}:\frac{{{x^2} - 1}}{{9{x^2} - 1}} = \frac{{ - x - 1}}{{3x + 1}}.\frac{{9{x^2} - 1}}{{{x^2} - 1}} = \frac{{ - \left( {x + 1} \right)\left( {3x - 1} \right)\left( {3x + 1} \right)}}{{\left( {3x + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{ - \left( {3x - 1} \right)}}{{x - 1}} = \frac{{1 - 3x}}{{x - 1}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \( - 1\)
Ta có: \(M = \left( {1 + \frac{a}{b}} \right) \cdot \left( {1 + \frac{b}{c}} \right) \cdot \left( {1 + \frac{c}{a}} \right)\)
\( = \frac{{b + a}}{b} \cdot \frac{{c + b}}{c} \cdot \frac{{c + a}}{a}\)
\( = \frac{{b + a}}{b} \cdot \frac{{c + b}}{c} \cdot \frac{{c + a}}{a}\)
\( = \frac{{ - c}}{b} \cdot \frac{{\left( { - a} \right)}}{c} \cdot \frac{{\left( { - b} \right)}}{a}\)
\( = \frac{{ - abc}}{{abc}} = - 1.\)
Câu 2
Lời giải
Đáp án đúng là: A
Ta có: \(\frac{{3a}}{4} \cdot x = \frac{{4a}}{5}\) nên \(x = \frac{{4a}}{5}:\frac{{3a}}{4}\) suy ra \(x = \frac{{4a}}{5} \cdot \frac{4}{{3a}}\). Do đó, \(x = \frac{{16}}{{15}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.