CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({u_4} = {u_1} \cdot {q^3} \Leftrightarrow 3 = 81 \cdot {q^3} \Leftrightarrow {q^3} = \frac{1}{{27}} = {\left( {\frac{1}{3}} \right)^3} \Leftrightarrow q = \frac{1}{3}.\) Chọn D.

Lời giải

a) Đúng. Ta có \(2\sin x = - \sqrt 2 \Leftrightarrow \sin x = \frac{{ - \sqrt 2 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{4}} \right)\).

b) Sai. Ta có \(\sin x = \sin \left( { - \frac{\pi }{4}} \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \pi + \frac{\pi }{4} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{5\pi }}{4} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right).} \right.} \right.\)

Vậy phương trình có các nghiệm là: \(x = - \frac{\pi }{4} + k2\pi ;x = \frac{{5\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

c) Sai. Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{5\pi }}{4}\).

d) Sai. Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là 2 nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP