Câu hỏi:

12/09/2025 8 Lưu

Một chất điểm chuyển động có phương trình \(S = {t^3} - 3{t^2} - 9t + 2\), trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc tại thời điểm vận tốc bị triệt tiêu là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(S = {t^3} - 3{t^2} - 9t + 2\)

v=S'=3t26t9a=S"=6t6

Khi vận tốc bị triệt tiêu tức \(v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1 < 0\\t = 3\left( {tm} \right)\end{array} \right.\).

Khi đó gia tốc tại thời điểm vận tốc bị triệt tiêu là \(a = 6.3 - 6 = 12\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm \(v(t) = x'(t) = 3{t^2} - 12t + 9\).

b) Hàm \(a(t) = v'(t) = 6t - 12\).

c) d)  Tập xác định: \(D = [0; + \infty ]\); \(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Ảnh có chứa hàng, biểu đồ, văn bản, Sơ đồ

Mô tả được tạo tự động

Vậy trong khoảng từ \[t = 0\] đến \(t = 2\) thì vận tốc của chất điểm giảm, từ \(t = 2\) trở đi thì vận tốc của chất điểm tăng.

Đáp án: a) Đúng;   b) Đúng; c) Sai;   c) Sai.

Lời giải

Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)

Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.

Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).

\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)

Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Ảnh có chứa văn bản, hàng, biểu đồ, Sơ đồ

Mô tả được tạo tự động

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

Trả lời: 1,6.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP