Câu hỏi:

12/09/2025 33 Lưu

Một hộp đựng Chocolate bằng kim loại có hình dạng lúc mở nắp như hình vẽ dưới đây. Một phần tư thể tích phía trên của hộp được rải một lớp bơ sữa ngọt, phần còn lại phía dưới chứa đầy chocolate nguyên chất. Với kích thước như hình vẽ, gọi \(x = {x_0}\) là giá trị làm cho hộp kim loại có thể tích lớn nhất, khi đó thể tích chocolate nguyên chất có giá trị \({V_0}\) bằng

Ảnh có chứa bản phác thảo, hình vẽ, hàng, biểu đồ

Mô tả được tạo tự động

A. 64 (đvtt).                            

B. \(\frac{{64}}{3}\,\)(đvtt). 
C. \(16\,\)(đvtt).                          
D. 48 (đvtt).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \(0 < x < 6\).

Thể tích của hộp kim loại là: \(V\left( x \right) = \left( {6 - x} \right)\left( {12 - 2x} \right)x = 2{x^3} - 24{x^2} + 72x\) (đvtt).

\(V'\left( x \right) = 6{x^2} - 48x + 72,\)\(0 < x < 6\).

\(V'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 6\,\,\left( l \right)\end{array} \right.\)

Bảng biến thiên:

Ảnh có chứa hàng, biểu đồ, Sơ đồ, số

Mô tả được tạo tự động

Từ bảng biến thiên suy ra thể tích hộp kim loại lớn nhất khi và chỉ khi \(x = 2\).

Vậy \[{V_0} = \frac{3}{4}V\left( 2 \right) = \frac{3}{4}.64 = 48\](đvtt). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để số tiền thu được là lớn nhất \(\left( {0 < x \le 60} \right)\).

Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng)

Số tiền thu được: \(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2}.x = 90000x - 1500{x^2} + \frac{{25}}{4}{x^3}\)

 

Bài toán trở thành tìm giá trị lớn nhất của hàm số:

\(F'\left( x \right) = 90000 - 3000x + \frac{{75}}{4}{x^2};\,F'\left( x \right) = 0 \Leftrightarrow 90000 - 3000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 120({\rm{ktm)}}\\x = 40(tm)\end{array} \right.\).

Bảng biến thiên

A math problem with numbers and symbols

Description automatically generated with medium confidence

Vậy để thu được số tiền lớn nhất thì trên mỗi chuyến xe khách đó phải chở 40 người. Chọn B.

Lời giải

Gọi \(x\) là chiều rộng của đáy thùng, \(x > 0\), đơn vị \({\rm{m}}\).

\( \Rightarrow \) chiều dài của đáy thùng là: \(2x\).

Ta có \(V = x.2x.h = 10\) \( \Rightarrow h = \frac{5}{{{x^2}}}\).

Chi phí làm đáy thùng là: \(2{x^2}.75 = 150{x^2}\) (đơn vị nghìn đồng).

Chi phí làm diện tích xung quanh là : \(\left( {2x.\frac{5}{{{x^2}}} + 2.2x.\frac{5}{{{x^2}}}} \right).55 = \frac{{1650}}{x}\) (đơn vị nghìn đồng).

\( \Rightarrow \) Chi phí làm thùng là : \(T = 150{x^2} + \frac{{1650}}{x}\) (đơn vị nghìn đồng).

Xét hàm số \(T = 150{x^2} + \frac{{1650}}{x}\), với \(x > 0\).

Ta có \(T'\left( x \right) = 300x - \frac{{1650}}{{{x^2}}}\) ; \(T'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{11}}{2}}}\).

Bảng biến thiên

Dựa vào bảng biến thiên \(T\left( x \right)\) đạt giá trị nhỏ nhất tại \(x = \sqrt[3]{{\frac{{11}}{2}}}\).

Vậy chi phí ít nhất bằng \(T = 150{\sqrt[3]{{\frac{{11}}{2}}}^2} + \frac{{1650}}{{\sqrt[3]{{\frac{{11}}{2}}}}} \approx 1402000\) đồng. Chọn C.

Câu 3

A. \(20\).                                 

B. \(10\).                                 
C. \(1200\).                                 
D. \(1100\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 289 \(\left( {{\rm{m/s}}} \right)\).                                  

B. 105 \(\left( {{\rm{m/s}}} \right)\).                                              
C. 111 \(\left( {{\rm{m/s}}} \right)\).                                              
D. 487 \(\left( {{\rm{m/s}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP