Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Một sợi dây kim loại dài \(a\) \(\left( {{\rm{cm}}} \right)\). Người ta cắt đoạn dây đó thành hai đoạn có độ dài \(x\) \(\left( {{\rm{cm}}} \right)\)được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông \(\left( {a > x > 0} \right).\)

a) Bán kính đường tròn: \(r = \frac{x}{\pi }\).
b) Diện tích hình vuông: \({\left( {\frac{{a - x}}{4}} \right)^2}\).
c) Tổng diện tích hai hình: \(\frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
d) Khi \(x = \frac{{a\pi }}{{2 + \pi }}\) thì hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất.
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Một sợi dây kim loại dài \(a\) \(\left( {{\rm{cm}}} \right)\). Người ta cắt đoạn dây đó thành hai đoạn có độ dài \(x\) \(\left( {{\rm{cm}}} \right)\)được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông \(\left( {a > x > 0} \right).\)
a) Bán kính đường tròn: \(r = \frac{x}{\pi }\).
b) Diện tích hình vuông: \({\left( {\frac{{a - x}}{4}} \right)^2}\).
c) Tổng diện tích hai hình: \(\frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
d) Khi \(x = \frac{{a\pi }}{{2 + \pi }}\) thì hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất.
Quảng cáo
Trả lời:

a) Do \(x\) là độ dài của đoạn dây cuộn thành hình tròn \(\left( {0 < x < a} \right)\).
Suy ra chiều dài đoạn còn lại là \(a - x\).
Chu vi đường tròn: \(2\pi r = x\)\( \Rightarrow r = \frac{x}{{2\pi }}\). Diện tích hình tròn: \({S_1} = \pi .{r^2}\)\( = \frac{{{x^{\rm{2}}}}}{{4\pi }}\).
b) Diện tích hình vuông: \({S_2} = {\left( {\frac{{a - x}}{4}} \right)^2}\).
c) Tổng diện tích hai hình: \(S = \frac{{{x^2}}}{{4\pi }} + {\left( {\frac{{a - x}}{4}} \right)^2}\)\( = \frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
Đạo hàm: \(S' = \frac{{\left( {4 + \pi } \right).x - a\pi }}{{8\pi }}\); \(S' = 0\)\( \Leftrightarrow x = \frac{{a\pi }}{{4 + \pi }}\).
d) Hàm \(S\) chỉ có một cực trị và là cực tiểu tại \(x = \frac{{a\pi }}{{4 + \pi }}\) suy ra \({S_{\min }} \Leftrightarrow \)\(x = \frac{{a\pi }}{{4 + \pi }}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; c) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm \(v(t) = x'(t) = 3{t^2} - 12t + 9\).
b) Hàm \(a(t) = v'(t) = 6t - 12\).
c) d) Tập xác định: \(D = [0; + \infty ]\); \(a(t) = 0 \Leftrightarrow t = 2\)
Bảng biến thiên:
Vậy trong khoảng từ \[t = 0\] đến \(t = 2\) thì vận tốc của chất điểm giảm, từ \(t = 2\) trở đi thì vận tốc của chất điểm tăng.
Đáp án: a) Đúng; b) Đúng; c) Sai; c) Sai.
Lời giải
Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)
Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.
Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).
\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)
\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)
Ta có bảng biến thiên với \(t \in [0; + \infty )\):
Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.
Trả lời: 1,6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.