Một tam giác có độ dài ba cạnh là 52, 56, 60. Gọi \(R,r\) lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác. Khi đó \(R \cdot r\) bằng bao nhiêu?
Quảng cáo
Trả lời:

Ta có \[p = \frac{{a + b + c}}{2} = \frac{{52 + 56 + 60}}{2} = 84\].
\[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {84\left( {84 - 52} \right)\left( {84 - 56} \right)\left( {84 - 60} \right)} = 1344\].
Khi đó \[r = \frac{S}{p} = 16;\,\,R = \frac{{abc}}{{4S}} = \frac{{52 \cdot 56 \cdot 60}}{{4 \cdot 1344}} = \frac{{65}}{2}\].
Ta có \(R \cdot r = \frac{{65}}{2} \cdot 16 = 520\).
Đáp án: 520.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phủ định của mệnh đề \(P\) là \(\bar P:\) “\({x^2} - 3x + 4 = 0\) có nghiệm” hoặc \(\bar P:\)“\({x^2} - 3x + 4 = 0\) không vô nghiệm”.
Vậy có 2 mệnh đề thỏa mãn. Mệnh đề còn lại không phải là phủ định của mệnh đề \(P\).
Đáp án: 2.
Lời giải
Thay \[x = 2023\], ta được \[P\left( {2023} \right) = 2 \cdot 2023 - 5 = 4041 > 0\] (đúng). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.