Câu hỏi:

15/09/2025 28 Lưu

Lớp 10A chuẩn bị lập danh sách thi học sinh giỏi ba môn Toán, Văn, Anh. Lớp có 16 bạn giỏi môn Toán, 17 bạn giỏi môn Văn, 18 bạn giỏi môn Anh. Trong đó có 4 bạn giỏi đúng hai môn Toán và Văn, 5 bạn chỉ giỏi hai môn Văn và Anh, giỏi đúng hai môn Toán và Anh có 5 bạn. Biết rằng có 3 bạn giỏi cả ba môn và học sinh giỏi ít nhất một môn sẽ có tên trong danh sách thi học sinh giỏi. Hỏi danh sách có bao nhiêu học sinh?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A, B, C lần lượt là tập hợp các bạn giỏi các môn Toán, Văn, Anh.

Ta vẽ biểu đồ VEN như sau:

Lớp 10A chuẩn bị lập danh sách thi học sinh giỏi ba môn Toán, Văn, Anh. Lớp có 16 bạn giỏi môn Toán, 17 bạn giỏi môn Văn (ảnh 1)

Số bạn chỉ giỏi Toán là: 16 – 5 – 4 – 3 = 4 (bạn).

Số bạn chỉ giỏi Văn là: 17 – 5 – 4 – 3 = 5 (bạn).

Số bạn chỉ giỏi Anh là: 18 – 5 – 5 – 3 = 5 (bạn).

Số học sinh có tên trong danh sách là: 4 + 5 + 5 + 4 + 3 + 5 + 5 = 31 (bạn).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,y\) lần lượt là số xe máy Lead và số xe máy Vision nhập về để lợi nhuận thu được là lớn nhất \(\left( {x,y \in \mathbb{N}} \right)\).

Số vốn ban đầu không vượt quá \(36\) tỉ đồng nên ta có: \(40x + 30y \le 36000\).

Nhu cầu thị trường không vượt quá \(1100\) xe nên: \(x + y \le 1100\).

Nhu cầu xe Lead không vượt quá \(1,5\) lần nhu cầu Vision nên: \(x \le \frac{3}{2}y\).

Ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}x \ge 0\\y \ge 0\\40x + 30y \le 36000\\x + y \le 1100\end{array}\\{x \le \frac{3}{2}y\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\,\,\,\,\,\left( I \right)\)

Biểu diễn miền nghiệm của hệ bất phương trình \(\left( I \right)\) trên mặt phẳng \(Oxy\) ta được miền tứ giác \(OEFK\), với \(O\left( {0;0} \right),\,E\left( {600;400} \right),\,F\left( {300;800} \right),\,K\left( {0;1100} \right)\).

Trong năm nay, một cửa hàng kinh doanh xe máy dự định kinh doanh hai loại xe máy: xe máy Lead và xe máy Vision (ảnh 1)

Lợi nhuận: \(F\left( {x;y} \right) = 5x + 3,2y\) (triệu đồng).

\(F\left( {0;0} \right) = 0\)

\(F\left( {600;400} \right) = 4280\)

\(F\left( {300;800} \right) = 4060\)

\(F\left( {0;1100} \right) = 3520\).

Vậy cửa hàng nhập \(600\) xe Lead và \(400\)xe Vision thì lợi nhuận thu được là lớn nhất.

Lợi nhuận có thể thu được lớn nhất của cửa hàng là: \(5 \times 600 + 3,2 \times 400 = 4280\) triệu đồng.

Lời giải

Thay \[x = 2023\], ta được \[P\left( {2023} \right) = 2 \cdot 2023 - 5 = 4041 > 0\] (đúng). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP