Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng, ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên, \(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \[x\] và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà cửa hàng bán được trong một tháng. Điều kiện của \[x\] và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương trình \(ax + by > 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\).
Quảng cáo
Trả lời:

Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng nên một ly “Giọt lệ thiên thần” có giá \(150\,000\)đồng.
Ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng nên một ly “Giọt lệ ác quỷ” có giá \(180\,000\) đồng.
Tổng số tiền phải chi trả của cửa hàng trong một tháng là \(17\,000\,000\) đồng.
Để cửa hàng có lãi thì thu nhập của cửa hàng phải lớn hơn \(17\,000\,000\) đồng nên ta có:
\(150\,000x + 180\,000y > 17\,000\,000\)\( \Leftrightarrow 15x + 18y > 1\,700\).
Vậy \(a = 15\,;\,\,b = 18 \Rightarrow T = 2a + b = 2 \cdot 15 + 18 = 48\).
Đáp án: 48.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mệnh đề “Mọi số thực đều có bình phương không âm” nếu dùng ký hiệu toán học sẽ là \(\forall x \in \mathbb{R}:{x^2} \ge 0\).
Chọn A.
Lời giải
Giả sử trong mỗi tháng cửa hàng cần làm \[x\] kệ sách và \[y\] bàn làm việc \((x,y \in \mathbb{N})\).
Từ giả thiết, ta được hệ bất phương trình: \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\5x + 10y \le 600\\4x + 3y \le 240\end{array} \right.\].
Mỗi tháng khi bán \[x\] kệ sách và \[y\] bàn làm việc lợi nhuận thu được là
\[F\left( {x;y} \right) = 400x + 750y\] (nghìn đồng).
Ta cần tìm giá trị lớn nhất của \[F\left( {x;y} \right)\] khi \[\left( {x;y} \right)\] thỏa mãn hệ bất phương trình trên.
Miền nghiệm của hệ bất phương trình trên là miền tứ giác \[OABC\] với tọa độ các đỉnh \[O\left( {0;0} \right),A\left( {0;60} \right),B\left( {24;48} \right),C\left( {60;0} \right)\].

Tính giá trị của biểu thức \[F\] tại các đỉnh của tứ giác này
\[F\left( {0;0} \right) = 0,\quad F\left( {0;60} \right) = 45000,\quad F\left( {24;48} \right) = 45600,\quad F\left( {60;0} \right) = 24000.\]
So sánh các giá trị thu được của \[F\] ta được giá trị lớn nhất cần tìm là \[F\left( {24;48} \right) = 45600.\]
Vậy trong mỗi tháng cửa hàng cần làm \[24\] kệ sách và \[48\] bàn làm việc để lợi nhuận thu được là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.