Câu hỏi:

16/09/2025 24 Lưu

Một công ty dịch vụ cho thuê xe hơi vào dịp Tết với giá thuê mỗi chiếc xe hơi như sau: khách thuê tối thiểu phải thuê trọn ba ngày Tết (mùng \(1,2,3\)) với giá 1 triệu đồng/ngày; những ngày còn lại (nếu khách còn thuê) sẽ được tính giá thuê là 700 000 đồng/ngày. Giả sử \(T\) là tổng số tiền mà khách phải trả khi thuê một chiếc xe hơi của công ty và \(x\) là số ngày thuê của khách.

a) Hàm số \(T\) theo \(x\) là \(T = 900\,000 + 700\,000x\).

b) Điều kiện của \(x\) là \(x \in \mathbb{N}\).

c) Một khách hàng thuê một chiếc xe hơi công ty trong 7 ngày tết thì sẽ trả khoản tiền thuê là \(5\,800\,000\)(đồng).

d) Anh Bình định dành ra một khoản tối đa là 10 triệu đồng cho phí thuê xe đi chơi trong dịp tết, khi đó anh Bình có thể thuê xe của công ty trên tối đa 12 ngày.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

b) Sai. Theo câu a), ta có điều kiện của \(x\) là \(x \ge 3,x \in \mathbb{N}\).

c) Đúng. Với \(x = 7\) thì \(T = 900\,000 + 700\,000 \cdot 7 = 5\,800\,000\) (đồng).

d) Sai. Xét bất phương trình

\[900\,000 + 700\,000x \le 10\,000\,000 \Leftrightarrow 9 + 7x \le 100 \Leftrightarrow x \le \frac{{91}}{7} = 13.\]

Vậy với khoản tiền 10 triệu đồng, anh Bình có thể thuê một chiếc xe tối đa 13 ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] là số mét vải loại A, \[y\] là số mét vải loại B mà người thợ sản suất.

Theo đề ta suy ra hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 6\\x + 2y \le 8\end{array} \right.\) (1).

Số tiền lợi nhuận là: \[L\left( {x;y} \right) = 0,8x + y\] (triệu đồng).

+ Biểu diễn miền nghiệm của hệ (1) lên mặt phẳng tọa độ \[Oxy\] là miền tứ giác \[OABC\] (kể cả biên) với \[O\left( {0;0} \right),A\left( {0;4} \right),B\left( {4;2} \right),C\left( {6;0} \right).\]

Một người thợ dệt có 6 kg sợi bông và 8 kg sợi gai. Dệt mỗi mét vuông vải loại A hết 1 kg sợi bông và 1 kg sợi gai (ảnh 1)

+ Xét \[L\left( {x;y} \right)\] tại các đỉnh của tứ giác \[OABC\], ta có:

\[L\left( {0;0} \right) = 0\] (triệu đồng)

\[L\left( {0;4} \right) = 4\] (triệu đồng)

\[L\left( {4;2} \right) = 5,2\] (triệu đồng)

\[L\left( {6;0} \right) = 4,8\] (triệu đồng).

+ Ta thấy \[L\] đạt giá trị lớn nhất là \[5,2\] (triệu đồng) tại \[x = 4\] và \[y = 2.\]

Vậy người thợ cần sản xuất 4 mét loại A và 2 mét loại B thì thu lại lợi cao nhất.

Lời giải

Cho hai tập hợp X, Y thỏa mãn X\Y = {7; 15} và X con Y = (-1; 2). Xác định số phần tử là số nguyên của tập hợp X. (ảnh 1)

Ta có \(X = \left( {X\backslash Y} \right) \cup \left( {X \cap Y} \right) = \left\{ {7;\,15} \right\} \cup \left( { - 1;2} \right)\).

Khi đó, các số nguyên thuộc tập \(X\) là \(0;1;7;15\).

Vậy số phần tử là số nguyên của \(X\) là 4.

Đáp án: 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP