Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Biết rằng tỉ số của hai đoạn thẳng \(AB\) và \(CD\) là \(\frac{{AB}}{{CD}} = \frac{3}{5}\) và \(AB = 15\;{\rm{cm}}{\rm{.}}\) Tính độ dài đoạn thẳng \(CD.\)
Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Biết rằng tỉ số của hai đoạn thẳng \(AB\) và \(CD\) là \(\frac{{AB}}{{CD}} = \frac{3}{5}\) và \(AB = 15\;{\rm{cm}}{\rm{.}}\) Tính độ dài đoạn thẳng \(CD.\)
A. \(CD = 25\;{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \(\frac{{AB}}{{CD}} = \frac{3}{5}\) nên \(\frac{{15}}{{CD}} = \frac{3}{5},\) suy ra \(CD = 15:\frac{3}{5} = 25\;\left( {{\rm{cm}}} \right).\) Vậy \(CD = 25\;{\rm{cm}}{\rm{.}}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(120\)
Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)
Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)
Lời giải
a) Đúng.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AB\;{\rm{//}}\;CD,\;AB = CD.\)
Vì \(M,\;N\) lần lượt là trung điểm của \(AB\) và \(CD\) nên \(AM = MB = \frac{1}{2}AB,\;DN = NC = \frac{1}{2}DC.\)
Do đó, \(AM = MB = DN = NC.\)
Tứ giác \(AMCN\) có: \(AM = CN,\;AM\;{\rm{//}}\;CN\) nên tứ giác \(AMCN\) là hình bình hành.
b) Đúng.
Vì tứ giác \(AMCN\) là hình bình hành nên \(AN\;{\rm{//}}\;CM.\)
Tam giác \(APB\) có: \(AP\;{\rm{//}}\;QM\) nên theo định lí Thalès ta có: \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}}.\)
c) Đúng.
Tam giác \(DQC\) có: \(PN\;{\rm{//}}\;CQ\) nên theo định lí Thalès ta có: \(\frac{{DN}}{{NC}} = \frac{{DP}}{{PQ}}.\)
Mà \(DN = NC\) nên \(\frac{{DP}}{{PQ}} = 1\) hay \(DP = PQ.\) Do đó, \(P\) là trung điểm của \(DQ.\)
d) Sai.
Vì \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}},\) mà \(MA = MB\) nên \(\frac{{BQ}}{{PQ}} = 1\) hay \(PQ = QB.\)
Ta có: \(PQ = QB,\;DP = PQ\) nên \(PQ = QB = DP.\)
Mà \(PQ + QB + DP = BD\) nên \(DP = \frac{1}{3}BD.\)
Câu 3
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
