Câu hỏi:

22/09/2025 63 Lưu

Phần I. Trắc nghiệm nhiều phương án lựa chọn

(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)

Biết rằng tỉ số của hai đoạn thẳng \(AB\) và \(CD\) là \(\frac{{AB}}{{CD}} = \frac{3}{5}\) và \(AB = 15\;{\rm{cm}}{\rm{.}}\) Tính độ dài đoạn thẳng \(CD.\)

A. \(CD = 25\;{\rm{cm}}{\rm{.}}\)  

B. \(CD = 20\;{\rm{cm}}{\rm{.}}\)  
C. \(CD = 10\;{\rm{cm}}{\rm{.}}\) 
D. \(CD = 5\;{\rm{cm}}{\rm{.}}\)   

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Vì \(\frac{{AB}}{{CD}} = \frac{3}{5}\) nên \(\frac{{15}}{{CD}} = \frac{3}{5},\) suy ra \(CD = 15:\frac{3}{5} = 25\;\left( {{\rm{cm}}} \right).\) Vậy \(CD = 25\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(120\)

Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)

Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)

Lời giải

Đáp án: \(6\)

Cho tam giác \(ABC\) có \(AC = 10\;{\rm{cm}}\) và điểm \(M\) là trung điểm của \(BC.\) Lấy điểm \(E\) thuộc \(AM\) sao cho \(EM = \frac{1}{3}EA.\) Tia \(BE\) cắt \(AC\) tại \(N.\) Tính độ dài đoạn thẳng \(AN.\) (Đơn vị: \({\rm{cm}}\)). (ảnh 1)

Lấy điểm \(F\) trên tia \(AM\) sao cho \(M\) là trung điểm của \(EF.\)

Tứ giác \(ECFB\) có: \(M\) là giao điểm của \(EF,\;CB.\) Mà \(M\) là trung điểm của \(EF,\) \(M\) là trung điểm của \(BC.\) Do đó, tứ giác \(ECFB\) là hình bình hành. Do đó, \(CF\;{\rm{//}}\;EB.\) Hay \(NE\;{\rm{//}}\;CF.\)

Vì \(EM = \frac{1}{3}EA,\;EM = \frac{1}{2}EF\) nên \(\frac{1}{3}AE = \frac{1}{2}EF\) suy ra \(\frac{{AE}}{{EF}} = \frac{3}{2}.\)

Tam giác \(ACF\) có: \(NE\;{\rm{//}}\;CF\) nên theo định lí Thalès ta có: \(\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}.\)

Do đó, \(\frac{{AN}}{{AC}} = \frac{3}{5}.\) Vậy \(AN = \frac{3}{5} \cdot 10 = 6\;\left( {{\rm{cm}}} \right).\)

Câu 3

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)

B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)  
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)  
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP