Câu hỏi:

22/09/2025 39 Lưu

Cho \(AB = 8\;{\rm{cm}}.\) Lấy điểm \(C\) thuộc tia đối của tia \(BA\) sao cho \(BC = 4\;{\rm{cm}}{\rm{.}}\) Tính tỉ số \(\frac{{AB}}{{AC}}.\)

A. \(\frac{{AB}}{{AC}} = 2.\) 

B. \(\frac{{AB}}{{AC}} = \frac{3}{2}.\) 
C. \(\frac{{AB}}{{AC}} = \frac{2}{3}.\) 
D. \(\frac{{AB}}{{AC}} = \frac{1}{2}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho \(AB = 8\;{\rm{cm}}.\) Lấy điểm \(C\) thuộc tia đối của tia \(BA\) sao cho \(BC = 4\;{\rm{cm}}{\rm{.}}\) Tính tỉ số \(\frac{{AB}}{{AC}}.\) (ảnh 1)

Ta có: \(AC = AB + BC = 8 + 4 = 12\;\left( {{\rm{cm}}} \right).\) Do đó, \(\frac{{AB}}{{AC}} = \frac{8}{{12}} = \frac{2}{3}.\) Vậy \(\frac{{AB}}{{AC}} = \frac{2}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(120\)

Vì tam giác \(ABC\) có: \(FE\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{FC}} = \frac{{BE}}{{EC}}.\)

Do đó, \(BE = \frac{{AF}}{{FC}} \cdot EC = \frac{{80}}{{40}} \cdot 60 = 120\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai vị trí \(E\) và \(B\) bằng \(120\;{\rm{m}}{\rm{.}}\)

Lời giải

         a) Tứ giác \(AMCN\) là hình bình hành.           b) \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}}.\)           c) \(P\) là trung điểm của \(DQ.\)           d) \(DP = \frac{1}{4}BD.\) (ảnh 1)

a) Đúng.

Vì tứ giác \(ABCD\) là hình bình hành nên \(AB\;{\rm{//}}\;CD,\;AB = CD.\)

\(M,\;N\) lần lượt là trung điểm của \(AB\)\(CD\) nên \(AM = MB = \frac{1}{2}AB,\;DN = NC = \frac{1}{2}DC.\)

Do đó, \(AM = MB = DN = NC.\)

Tứ giác \(AMCN\) có: \(AM = CN,\;AM\;{\rm{//}}\;CN\) nên tứ giác \(AMCN\) là hình bình hành.

b) Đúng.

tứ giác \(AMCN\) là hình bình hành nên \(AN\;{\rm{//}}\;CM.\)

Tam giác \(APB\) có: \(AP\;{\rm{//}}\;QM\) nên theo định lí Thalès ta có: \(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}}.\)

c) Đúng.

Tam giác \(DQC\) có: \(PN\;{\rm{//}}\;CQ\) nên theo định lí Thalès ta có: \(\frac{{DN}}{{NC}} = \frac{{DP}}{{PQ}}.\)

Mà \(DN = NC\) nên \(\frac{{DP}}{{PQ}} = 1\) hay \(DP = PQ.\) Do đó, \(P\) là trung điểm của \(DQ.\)

d) Sai.

\(\frac{{BM}}{{MA}} = \frac{{BQ}}{{QP}},\) mà \(MA = MB\) nên \(\frac{{BQ}}{{PQ}} = 1\) hay \(PQ = QB.\)

Ta có: \(PQ = QB,\;DP = PQ\) nên \(PQ = QB = DP.\)

Mà \(PQ + QB + DP = BD\) nên \(DP = \frac{1}{3}BD.\)

Câu 3

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)

B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)  
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)  
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{EC}}{{AE}} = \frac{1}{4}.\)  
B. \(\frac{{EC}}{{AE}} = \frac{1}{2}.\)    
C. \(\frac{{EC}}{{AE}} = \frac{2}{3}.\)  
D. \(\frac{{EC}}{{AE}} = \frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP