Cho tam giác \(ABC\) có \(AC = 22\,\;{\rm{cm}}\) và điểm \(D\) là thuộc cạnh \(BC\) sao cho \(\frac{{BD}}{{CD}} = 3,\) điểm \(E\) thuộc cạnh \(AD\) sao cho \(AE = \frac{1}{3}AD.\) Gọi \(K\) là giao điểm của \(BE\) và \(AC.\) Độ dài đoạn thẳng \(AK\) bằng bao nhiêu \({\rm{cm?}}\)
Cho tam giác \(ABC\) có \(AC = 22\,\;{\rm{cm}}\) và điểm \(D\) là thuộc cạnh \(BC\) sao cho \(\frac{{BD}}{{CD}} = 3,\) điểm \(E\) thuộc cạnh \(AD\) sao cho \(AE = \frac{1}{3}AD.\) Gọi \(K\) là giao điểm của \(BE\) và \(AC.\) Độ dài đoạn thẳng \(AK\) bằng bao nhiêu \({\rm{cm?}}\)
Quảng cáo
Trả lời:

Đáp án: \(6\)

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)
Vì \(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\) Vì \(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)
Tam giác \(AMD\) có \(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)
Tam giác \(CKB\) có \(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)
Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)
Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng.
Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.
b) Đúng.
\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
c) Đúng.
\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)
Mà \(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
d) Sai.
Vì tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) Mà \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)
Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)
Lời giải
Đáp án: \(3\)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)
Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)
Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)
Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.