Cho hình bình hành \[ABCD\] có \[AC \bot AD\] và \(AD = 3,5\,;\,\,\widehat D = 50^\circ \). Hỏi diện tích của hình bình hành là bao nhiêu? (Kết quả làm tròn đến hàng phần mười)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: B
Xét \[\Delta ADC\] vuông tại \[A,\] ta có: \(AC = AD \cdot \tan \widehat {ADC} = {\rm{ }}3,5 \cdot \tan \,50^\circ .\)
Khi đó gọi \[S\] là diện tích hình bình hành, ta có:
\[S = AD \cdot AC = 3,5 \cdot 3,5\tan 50^\circ \approx 14,6\] (đvdt)
Vậy diện tích của hình bình hành là \[14,6.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[a \le 3,2.\]
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Theo đề bài, nếu xe có chiều rộng lớn hơn \[3,2\,\,{\rm{m}}\] thì không được phép lưu thông nghĩa là xe đó (không phải xe cơ giới và thô sơ) có chiều rộng nhỏ hơn hoặc bằng \[3,2\,\,{\rm{m}}\] được phép lưu thông.
Do đó, nếu một xe tải đi trên đường đó thì \[a \le 3,2.\]
Lời giải
Hướng dẫn giải
Đáp án: 3.
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím màn hình cho kết quả \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)
Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.