Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\) có nghiệm \[\left( {x\,;\,\,y} \right).\] Tính tổng \[x + y\].
Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)
Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\) có nghiệm \[\left( {x\,;\,\,y} \right).\] Tính tổng \[x + y\].
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 3.
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\).
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = 2,\) ta bấm tiếp phím màn hình cho kết quả \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Cách 2. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x + y = 7\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(4x = 8\), suy ra \(x = 2.\)
Thay \(x = 2\) vào phương trình \(x - y = 1,\) ta được: \(2 - y = 1,\) suy ra \(y = 1.\)
Do đó \[x + y = 2 + 1 = 3.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \[ - {\bf{3}}\].
Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]
\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]
\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]
\[3x < - 7\]
\[x < - \frac{7}{3}\]
Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]
Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Giải phương trình:
\(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\)
\[\frac{1}{3}x - 3 = 0\] hoặc \[x + 8 = 0\]
\[\frac{1}{3}x = 3\] hoặc \(x = - 8\)
\(x = 9\) hoặc \(x = - 8\).
Do đó phương trình đã cho có hai nghiệm là \(x = 9\) và \(x = - 8\).
Vậy tổng các nghiệm của phương trình đó là: \(9 + \left( { - 8} \right) = 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
