Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 8\;{\rm{cm}}{\rm{,}}\;AC = 15\;{\rm{cm}}{\rm{.}}\) Tính độ dài \(BC.\)
A. \(BC = 12\;{\rm{cm}}.\)
Quảng cáo
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\widehat N = 30^\circ .\)
Lời giải
Đáp án đúng là: C
Vì \(\Delta MNP\) vuông tại \(M\) nên \(M{N^2} + M{P^2} = N{P^2}\) (định lí Pythagore).
Suy ra \(M{P^2} = N{P^2} - M{N^2} = {\left( {\sqrt {32} } \right)^2} - {4^2} = 16,\) do đó \(MP = \sqrt {16} = 4\;\left( {{\rm{cm}}} \right).\)
Vì \(\Delta MNP\) vuông tại \(M\) và \(MP = MN\left( { = 4\;{\rm{cm}}} \right)\) nên \(\Delta MNP\) vuông cân tại \(M.\) Vậy \(\widehat N = 45^\circ .\)
Lời giải

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m}}{\rm{,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)
Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:
\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\) nên \(AB = \sqrt {200} \approx 14,1\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai điểm \(A\) và \(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.