Cho hình vẽ:
a) \(\Delta ADE = \Delta ABC.\)
b) \(\Delta ABC\) vuông tại \(A.\)
c) Diện tích \(\Delta ABC\) bằng \(24\;{\rm{c}}{{\rm{m}}^2}.\)
d) \(AF = 3,6\;{\rm{cm}}{\rm{.}}\)
Cho hình vẽ:

a) \(\Delta ADE = \Delta ABC.\)
b) \(\Delta ABC\) vuông tại \(A.\)
c) Diện tích \(\Delta ABC\) bằng \(24\;{\rm{c}}{{\rm{m}}^2}.\)
d) \(AF = 3,6\;{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:

a) Sai.
\(\Delta ADE\) và \(\Delta ACB\) có: \(\widehat D = \widehat C\;\left( {gt} \right),\;AD = AC\;\left( { = 6\;{\rm{cm}}} \right),\;\widehat {DAE} = \widehat {BAC}\) (hai góc đối đỉnh).
Do đó, \(\Delta ADE = \Delta ACB\;\left( {g - c - g} \right).\)
b) Đúng.
Vì \(\Delta ADE = \Delta ACB\;\left( {cmt} \right)\) nên \(DE = BC = 10\;{\rm{cm}}{\rm{.}}\)
Vì: \(A{B^2} + A{C^2} = B{C^2}\;\left( {{\rm{do}}\;{6^2} + {8^2} = {{10}^2}} \right)\) nên \(\Delta ABC\) vuông tại \(A\) (định lí Pythagore đảo).
c) Đúng.
Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 6 \cdot 8 = 24\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích \(\Delta ABC\) bằng \(24\;{\rm{c}}{{\rm{m}}^2}.\)
d) Sai.
Vì \(AF\) là đường cao của \(\Delta ABC\) nên diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}AF \cdot BC.\)
Suy ra: \(\frac{1}{2} \cdot AF \cdot 10 = 24,\) suy ra \(AF = 4,8\;{\rm{cm}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)
a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)
b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)
c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)
d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)
a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)
b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)
c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)
d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Lời giải
a) Sai.
Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(AC = \frac{4}{3}AB.\)
Vì \(\Delta ABC\) vuông tại \(A\) nên theo định lí Pythagore ta có:
\(B{C^2} = A{B^2} + A{C^2} = A{B^2} + {\left( {\frac{4}{3}AB} \right)^2} = \frac{{25}}{9}A{B^2}\) nên \(BC = \frac{5}{3}AB,\) suy ra \(\frac{{BC}}{5} = \frac{{AB}}{3}.\)
b) Sai.
Vì \(\frac{{AB}}{{AC}} = \frac{3}{4}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4},\)mà \(\frac{{BC}}{5} = \frac{{AB}}{3}\) nên \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5}.\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = \frac{{AB + AC + BC}}{{3 + 4 + 5}} = \frac{{48}}{{12}} = 4.\)
Vậy \(\frac{{AB}}{3} = \frac{{AC}}{4} = \frac{{BC}}{5} = 4.\)
c) Đúng.
Ta có: \(BC = 5 \cdot 4 = 20\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 20\;{\rm{cm}}{\rm{.}}\)
d) Đúng.
Ta có: \(AB = 3 \cdot 4 = 12\;\left( {{\rm{cm}}} \right)\) và \(AC = 4 \cdot 4 = 16\;\left( {{\rm{cm}}} \right).\)
Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 12 \cdot 16 = 96\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Lời giải

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m}}{\rm{,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)
Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:
\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\) nên \(AB = \sqrt {200} \approx 14,1\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai điểm \(A\) và \(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho \(\Delta ABC\) cân tại \(A\) có \(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)
a) \(\Delta ADC\) vuông tại \(D.\)
b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)
d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)
Cho \(\Delta ABC\) cân tại \(A\) có \(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)
a) \(\Delta ADC\) vuông tại \(D.\)
b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)
d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.