Câu hỏi:

19/09/2025 27 Lưu

Cho \(\Delta ABC\) cân tại \(A\)\(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)

a) \(\Delta ADC\) vuông tại \(D.\)

b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)

c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)

d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho \(\Delta ABC\) cân tại \(A\) có \(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)  a) \(\Delta ADC\) vuông tại \(D.\) (ảnh 1)

a) Đúng.

\(\Delta ABC\) cân tại \(A\) nên \(AD\) là đường trung tuyến đồng thời là đường cao của \(\Delta ABC.\)

Do đó, \(AD \bot BC\) tại \(D.\) Suy ra, \(\Delta ADC\) vuông tại \(D.\)

b) Đúng.

\(\Delta ABC\) cân tại \(A\) nên \(AC = AB = 12\;{\rm{cm}}.\) Ta có: \(DC = \frac{1}{2}BC = \frac{1}{2} \cdot 6 = 3\;\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:

\(A{D^2} + D{C^2} = A{C^2}\)

\(A{D^2} = A{C^2} - A{D^2} = {12^2} - {3^2} = 135\)

\(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)

Vậy \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)

c) Sai.

\(DE = \frac{1}{4}AE\) nên \(DE = \frac{1}{3}AD = \frac{{\sqrt {135} }}{3}\;{\rm{cm}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta EDC\) vuông tại \(D\) ta có:

\(E{C^2} = E{D^2} + D{C^2} = {\left( {\frac{{\sqrt {135} }}{3}} \right)^2} + {3^2} = 24\) nên \(EC = \sqrt {24} \;{\rm{cm}}{\rm{.}}\)

d) Sai.

Chu vi \(\Delta DEC\) là: \(P = EC + ED + DC = \sqrt {24} + \frac{{\sqrt {135} }}{3} + 3 \approx 11,8 < 12.\)

Vậy chu vi \(\Delta DEC\) nhỏ hơn \(12\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat N = 30^\circ .\)  

B. \(\widehat N = 40^\circ .\)  
C. \(\widehat N = 45^\circ .\)    
D. \(\widehat N = 50^\circ .\)

Lời giải

Đáp án đúng là: C

Vì \(\Delta MNP\) vuông tại \(M\) nên \(M{N^2} + M{P^2} = N{P^2}\) (định lí Pythagore).

Suy ra \(M{P^2} = N{P^2} - M{N^2} = {\left( {\sqrt {32} } \right)^2} - {4^2} = 16,\) do đó \(MP = \sqrt {16}  = 4\;\left( {{\rm{cm}}} \right).\)

Vì \(\Delta MNP\) vuông tại \(M\) và \(MP = MN\left( { = 4\;{\rm{cm}}} \right)\) nên \(\Delta MNP\) vuông cân tại \(M.\) Vậy \(\widehat N = 45^\circ .\)

Lời giải

Khoảng cách giữa hai điểm   và   trong hình vẽ bằng bao nhiêu mét? (Làm tròn kết quả đến hàng phần mười). (ảnh 2)

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m}}{\rm{,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)

Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:

\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\)  nên \(AB = \sqrt {200}  \approx 14,1\;\left( {\rm{m}} \right).\)

Vậy khoảng cách giữa hai điểm \(A\) và \(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)

a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)

b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)

c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)

d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP