Cho \(\Delta ABC\) cân tại \(A\) có \(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)
a) \(\Delta ADC\) vuông tại \(D.\)
b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)
d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)
Cho \(\Delta ABC\) cân tại \(A\) có \(AB = 12\;{\rm{cm}}{\rm{, }}BC = 6\;{\rm{cm}}{\rm{.}}\) Gọi \(D\) là trung điểm của \(BC.\) Gọi \(E\) là điểm thuộc tia đối của tia \(DA\) sao cho \(DE = \frac{1}{4}AE.\)
a) \(\Delta ADC\) vuông tại \(D.\)
b) \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
c) \(EC = 5\;{\rm{cm}}{\rm{.}}\)
d) Chu vi \(\Delta DEC\) lớn hơn \(12\;{\rm{cm}}{\rm{.}}\)
Quảng cáo
Trả lời:


a) Đúng.
Vì \(\Delta ABC\) cân tại \(A\) nên \(AD\) là đường trung tuyến đồng thời là đường cao của \(\Delta ABC.\)
Do đó, \(AD \bot BC\) tại \(D.\) Suy ra, \(\Delta ADC\) vuông tại \(D.\)
b) Đúng.
Vì \(\Delta ABC\) cân tại \(A\) nên \(AC = AB = 12\;{\rm{cm}}.\) Ta có: \(DC = \frac{1}{2}BC = \frac{1}{2} \cdot 6 = 3\;\left( {{\rm{cm}}} \right).\)
Áp dụng định lí Pythagore vào \(\Delta ADC\) vuông tại \(D\) ta có:
\(A{D^2} + D{C^2} = A{C^2}\)
\(A{D^2} = A{C^2} - A{D^2} = {12^2} - {3^2} = 135\)
\(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
Vậy \(AD = \sqrt {135} \;{\rm{cm}}{\rm{.}}\)
c) Sai.
Vì \(DE = \frac{1}{4}AE\) nên \(DE = \frac{1}{3}AD = \frac{{\sqrt {135} }}{3}\;{\rm{cm}}{\rm{.}}\)
Áp dụng định lí Pythagore vào \(\Delta EDC\) vuông tại \(D\) ta có:
\(E{C^2} = E{D^2} + D{C^2} = {\left( {\frac{{\sqrt {135} }}{3}} \right)^2} + {3^2} = 24\) nên \(EC = \sqrt {24} \;{\rm{cm}}{\rm{.}}\)
d) Sai.
Chu vi \(\Delta DEC\) là: \(P = EC + ED + DC = \sqrt {24} + \frac{{\sqrt {135} }}{3} + 3 \approx 11,8 < 12.\)
Vậy chu vi \(\Delta DEC\) nhỏ hơn \(12\;{\rm{cm}}{\rm{.}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\widehat N = 30^\circ .\)
Lời giải
Đáp án đúng là: C
Vì \(\Delta MNP\) vuông tại \(M\) nên \(M{N^2} + M{P^2} = N{P^2}\) (định lí Pythagore).
Suy ra \(M{P^2} = N{P^2} - M{N^2} = {\left( {\sqrt {32} } \right)^2} - {4^2} = 16,\) do đó \(MP = \sqrt {16} = 4\;\left( {{\rm{cm}}} \right).\)
Vì \(\Delta MNP\) vuông tại \(M\) và \(MP = MN\left( { = 4\;{\rm{cm}}} \right)\) nên \(\Delta MNP\) vuông cân tại \(M.\) Vậy \(\widehat N = 45^\circ .\)
Lời giải

Vẽ \(\Delta ABC\) như trong hình vẽ trên. Ta có: \(AC = 10\;{\rm{m}}{\rm{,}}\;BC = 40 - 30 = 10\;{\rm{m}}{\rm{.}}\)
Áp dụng định lí Pythagore vào \(\Delta ABC\) vuông tại \(C\) ta có:
\(A{B^2} = A{C^2} + B{C^2} = {10^2} + {10^2} = 200\) nên \(AB = \sqrt {200} \approx 14,1\;\left( {\rm{m}} \right).\)
Vậy khoảng cách giữa hai điểm \(A\) và \(B\) trong hình vẽ bằng khoảng \(14,1\;{\rm{m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)
a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)
b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)
c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)
d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Cho \(\Delta ABC\) vuông tại \(A\) có chu vi bằng \(48\;{\rm{cm}}\) và \(\frac{{AB}}{{AC}} = \frac{3}{4}.\)
a) \(\frac{{BC}}{5} = \frac{{AB}}{4}.\)
b) \(\frac{{AB}}{4} = \frac{{AC}}{3} = \frac{{BC}}{5} = 2.\)
c) \(BC = 20\;{\rm{cm}}{\rm{.}}\)
d) Diện tích \(\Delta ABC\) bằng \(96\;{\rm{c}}{{\rm{m}}^{\rm{2}}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.