Cặp số nào sau đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.?\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: C
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = - 21,\) ta bấm tiếp phím màn hình cho kết quả \(y = 15.\)
Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Cách 2. Thay \(x = 1;\,\,y = 1\) vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}2 \cdot 1 + 3 \cdot 1 = 5\,\,\left( { \ne 3} \right)\\ - 4 \cdot 1 - 5 \cdot 1 = - 9\,\,\left( { \ne 9} \right)\end{array} \right..\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Cách 3. Giải hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với \(2,\) ta được hệ phương trình mới \(\left\{ \begin{array}{l}4x + 6y = 6\\ - 4x - 5y = 9.\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(y = 15.\)
Thay \(y = 15\) vào phương trình \(2x + 3y = 3,\) ta được:
\(2x + 3 \cdot 15 = 3,\) hay \(2x + 45 = 3,\) suy ra \(2x = - 42,\) nên \(x = - 21.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( { - 21;\,\,15} \right).\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Đúng. Thay \(x = 5\) và \(y = - 1\) vào phương trình đã cho, ta được: \[5 + 2 \cdot \left( { - 1} \right) = 3.\]
Suy ra cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình \[x + 2y = 3.\] Do đó ý a) là đúng.
b) Sai. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn. Do đó ý b) là sai.
c) Sai. Viết lại phương trình \[x + 2y = 3\] thành \(y = \frac{3}{2} - \frac{1}{2}x\), khi đó tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = \frac{3}{2} - \frac{1}{2}x\). Do đó ý c) là sai.
d) Đúng. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn, có vô số nghiệm.
Viết lại phương trình \[x + 2y = 3\] thành \(x = 3 - 2y\).
Khi đó, nghiệm tổng quát của phương trình đó là: \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Do đó ý d) là đúng.
Lời giải
Hướng dẫn giải
Đáp án: 14.
Ta có \[3 < \frac{{2x - 2}}{8}\]
\[2x - 2 > 24\]
\[2x > 26\]
\[x > 26:2\]
\[x > 13.\]
Do đó, bất phương trình có nghiệm \[x > 13.\]
Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là \[x = 14.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn (3,0 điểm)
Phương trình nào sau đây không là phương trình bậc nhất hai ẩn?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.