Câu hỏi:

18/09/2025 48 Lưu

Cặp số nào sau đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.?\)

A. \(\left( {1;\,\,1} \right).\)   
B. \(\left( {1;\,\, - 1} \right).\)                  
C. \(\left( { - 21;\,\,15} \right).\)                             
D. \(\left( {21;\,\, - 15} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)

Với MTCT phù hợp, ta bấm lần lượt các phím:

MODE  5    1    2  =  3  =  3  =    4  =    5  =  9  =  = 

Trên màn hình cho kết quả \(x = - 21,\) ta bấm tiếp phím  màn hình cho kết quả \(y = 15.\)

Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)

Cách 2. Thay \(x = 1;\,\,y = 1\) vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}2 \cdot 1 + 3 \cdot 1 = 5\,\,\left( { \ne 3} \right)\\ - 4 \cdot 1 - 5 \cdot 1 = - 9\,\,\left( { \ne 9} \right)\end{array} \right..\)

Tương tự, thay giá trị của \(x\)\(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của cả hai phương trình trong hệ.

Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)

Cách 3. Giải hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với \(2,\) ta được hệ phương trình mới \(\left\{ \begin{array}{l}4x + 6y = 6\\ - 4x - 5y = 9.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(y = 15.\)

Thay \(y = 15\) vào phương trình \(2x + 3y = 3,\) ta được:

\(2x + 3 \cdot 15 = 3,\) hay \(2x + 45 = 3,\) suy ra \(2x = - 42,\) nên \(x = - 21.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( { - 21;\,\,15} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: 14.

Ta có \[3 < \frac{{2x - 2}}{8}\]

\[2x - 2 > 24\]

\[2x > 26\]

\[x > 26:2\]

\[x > 13.\]

Do đó, bất phương trình có nghiệm \[x > 13.\]

Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là  \[x = 14.\]

Câu 2

A. \[x = - 9\,;\,\,x = 4.\]                                     
B. \[x = 4.\]                   
C. \[x = - 9.\]                    
D. \[x = 9\,;\,\,x = 4.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

       \(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

       \(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)

       \(x = - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x = - 9\,;\) \(x = 4\).

Câu 4

A. \[5 + 7x \le 11.\]                                            
B. \[2,5x - 6 > 9 + 4x.\] 
C. \[5 + 7x \ge 15.\]                                            
D. \[3 - 0,2x > 13.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x \ne 1;{\rm{ }}x \ne - 3\].                        
B. \[x \ne 2;{\rm{ }}x \ne 1\].                                
C. \[x \ne - 3;{\rm{ }}x \ne -2\].                      
D. \(x \ne - 2;{\rm{ }}x \ne 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP