Cho tam giác \(ABC\) vuông tại \(A\). Khi đó, \(\sin \widehat {ABC}\) bằng:
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp án đúng là: A
Tam giác \[ABC\] vuông tại \[A\], ta có: \[\sin \widehat {ABC} = \frac{{AC}}{{BC}}\].
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: \[{\bf{42}},{\bf{5}}\].
Để đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {3;\,\, - 5} \right)\) thì thay \(x = 3,\,\,y = - 5\) vào hàm số \(y = ax + b\), ta được: \( - 5 = 3a + b\).
Tương tự, để đường thẳng đi qua điểm \(N\left( {1;\,\,2} \right)\), ta có: \(2 = a + b\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3a + b = - 5}\\{a + b = 2}\end{array}} \right.\).
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2a = - 7,\) suy ra \(a = - \frac{7}{2}\).
Thay \(a = - \frac{7}{2}\) vào phương trình \(a + b = 2\), ta được:
\( - \frac{7}{2} + b = 2,\) suy ra \(b = \frac{{11}}{2}\).
Vậy, tổng bình phương của \(a\) và \(b\) là \({a^2} + {b^2} = {\left( { - \frac{7}{2}} \right)^2} + {\left( {\frac{{11}}{2}} \right)^2} = \frac{{85}}{2} = 42,5.\)
Lời giải
Hướng dẫn giải
Gọi \[x,{\rm{ }}y\] (bước) lần lượt là số bước mà anh Sơn và chị Hà đi bộ trong 1 phút\[\left( {x,{\rm{ }}y \in \mathbb{N}*;\,\,x > y} \right).\]
Trong 2 phút, anh Sơn đi được \(2x\) (bước); chị Hà đi được \(2y\) (bước).
Nếu đi cùng trong 2 phút thì anh Sơn đi nhiều hơn chị Hà 20 bước nên
\(2x - 2y = 20\) hay \(x - y = 10 & \left( 1 \right)\)
Trong 3 phút anh Sơn đi được \(3x\) (bước)
Trong 5 phút chị Hà đi được \(5y\) (bước)
Do chị Hà đi trong 5 phút thì nhiều hơn anh Sơn đi trong 3 phút là 160 bước nên
\[5y - 3x = 160\] hay \[ - 3x + 5y = 160 & & \left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 10\\ - 3x + 5y = 160\end{array} \right.\).
Nhân hai vế của phương trình thứ nhất với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}3x - 3y = 30\\ - 3x + 5y = 160\end{array} \right..\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(2y = 190\) nên \(y = 95\) (thỏa mãn).
Thay \(y = 95\) vào phương trình thứ nhất của hệ ban đầu, ta được:
\[x - 95 = 10\] suy ra \(x = 10 + 95 = 105\) (thỏa mãn).
Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước anh Sơn đi là \(105 \cdot 60 = 6\,\,300\) (bước)
Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước chị Hà đi là \(95 \cdot 60 = 5\,\,700\) (bước)
Vậy anh Sơn đạt được mục tiêu đề ra, còn chị Hà thì không đạt mục tiêu đề ra.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.