Câu hỏi:

18/09/2025 16 Lưu

Một cột đèn \(AB\) cao 6 m có bóng in trên mặt đất là \(AC\) dài \(3,5\;{\rm{m}}\). Góc (làm tròn đến phút) mà tia sáng từ đèn \(B\) tạo với mặt đất là
vvvvv (ảnh 1)

A. \(58^\circ 45\prime \).     
B. \(59^\circ 50\prime \).    
C. \(59^\circ 45\prime \).      
D. \(59^\circ 4\prime \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(\tan C = \frac{{AB}}{{AC}} = \frac{6}{{3,5}} = \frac{{12}}{7}\). Suy ra \(\widehat {C\,} \approx 59^\circ 45\prime \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \[x,{\rm{ }}y\] (bước) lần lượt là số bước mà anh Sơn và chị Hà đi bộ trong 1 phút\[\left( {x,{\rm{ }}y \in \mathbb{N}*;\,\,x > y} \right).\]

Trong 2 phút, anh Sơn đi được \(2x\) (bước); chị Hà đi được \(2y\) (bước).

Nếu đi cùng trong 2 phút thì anh Sơn đi nhiều hơn chị Hà 20 bước nên

\(2x - 2y = 20\) hay \(x - y = 10 & \left( 1 \right)\)

Trong 3 phút anh Sơn đi được \(3x\) (bước)

Trong 5 phút chị Hà đi được \(5y\) (bước)

Do chị Hà đi trong 5 phút thì nhiều hơn anh Sơn đi trong 3 phút là 160 bước nên

\[5y - 3x = 160\] hay \[ - 3x + 5y = 160 & & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 10\\ - 3x + 5y = 160\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}3x - 3y = 30\\ - 3x + 5y = 160\end{array} \right..\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(2y = 190\) nên \(y = 95\) (thỏa mãn).

Thay \(y = 95\) vào phương trình thứ nhất của hệ ban đầu, ta được:

\[x - 95 = 10\] suy ra \(x = 10 + 95 = 105\) (thỏa mãn).

Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước anh Sơn đi là \(105 \cdot 60 = 6\,\,300\) (bước)

Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước chị Hà đi là \(95 \cdot 60 = 5\,\,700\) (bước)

Vậy anh Sơn đạt được mục tiêu đề ra, còn chị Hà thì không đạt mục tiêu đề ra.

Câu 2

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)

 Biết đường thẳng \(y = ax + b\) đi qua hai điểm \(M\left( {3;\,\, - 5} \right)\)\(N\left( {1;\,\,2} \right).\) Tính tổng bình phương của \(a\)\(b.\)

Lời giải

Hướng dẫn giải

Đáp số: \[{\bf{42}},{\bf{5}}\].

Để đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {3;\,\, - 5} \right)\) thì thay \(x = 3,\,\,y = - 5\) vào hàm số \(y = ax + b\), ta được: \( - 5 = 3a + b\).

Tương tự, để đường thẳng đi qua điểm \(N\left( {1;\,\,2} \right)\), ta có: \(2 = a + b\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3a + b = - 5}\\{a + b = 2}\end{array}} \right.\).

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2a = - 7,\) suy ra \(a = - \frac{7}{2}\).

Thay \(a = - \frac{7}{2}\) vào phương trình \(a + b = 2\), ta được:

\( - \frac{7}{2} + b = 2,\) suy ra \(b = \frac{{11}}{2}\).

Vậy, tổng bình phương của \(a\)\(b\)\({a^2} + {b^2} = {\left( { - \frac{7}{2}} \right)^2} + {\left( {\frac{{11}}{2}} \right)^2} = \frac{{85}}{2} = 42,5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(a < b\). Khi đó:

a) \(4a - 2 > 4b - 2.\)                                          b) \(6 - 3a < 6 - 3b\).

c) \(4a + 1 < 4b + 5\).                                         d) \(7 - 2a > 4 - 2b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP