Câu hỏi:

18/09/2025 37 Lưu

Cho tam giác \(ABC\) vuông tại \(A\)\(AB = 5{\rm{\;cm}}\) và đường cao \(AH = 3{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến độ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: \(53.\)

Xét \(\Delta ABH\) vuông tại \(H,\) ta có: \[\sin B = \frac{{AH}}{{AB}} = \frac{3}{5}.\]

Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(\widehat {B\,} + \widehat {C\,} = 90^\circ \), suy ra \(\cos C = \sin B = \frac{3}{5}.\)

vvvvv (ảnh 1)

Sử dụng MTCT, ta bấm lần lượt các phím:

SHIFT  cos  3    :    5  =  °  '  ''

Trên màn hình cho kết quả \(53^\circ 7'48.37'',\) làm tròn đến phút ta được \(53^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:               a) Đúng.     b) Sai.        c) Sai.        d) Đúng.

a) Đúng. Thay \(x = 5\)\(y = - 1\) vào phương trình đã cho, ta được: \[5 + 2 \cdot \left( { - 1} \right) = 3.\]

Suy ra cặp số \[\left( {5;\,\, - 1} \right)\] là một nghiệm của phương trình \[x + 2y = 3.\] Do đó ý a) là đúng.

b) Sai. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn. Do đó ý b) là sai.

c) Sai. Viết lại phương trình \[x + 2y = 3\] thành \(y = \frac{3}{2} - \frac{1}{2}x\), khi đó tất cả các nghiệm của phương trình đã cho được biểu diễn bởi đường thẳng \(y = \frac{3}{2} - \frac{1}{2}x\). Do đó ý c) là sai.

d) Đúng. Phương trình \[x + 2y = 3\] là phương trình bậc nhất hai ẩn, có vô số nghiệm.

Viết lại phương trình \[x + 2y = 3\] thành \(x = 3 - 2y\).

Khi đó, nghiệm tổng quát của phương trình đó là: \(\left( {3 - 2y;\,\,y} \right)\) với \(y \in \mathbb{R}\) tùy ý. Do đó ý d) là đúng.

Lời giải

Hướng dẫn giải

Đáp án: 14.

Ta có \[3 < \frac{{2x - 2}}{8}\]

\[2x - 2 > 24\]

\[2x > 26\]

\[x > 26:2\]

\[x > 13.\]

Do đó, bất phương trình có nghiệm \[x > 13.\]

Vậy số tự nhiên nhỏ nhất của \(x\) thỏa mãn bất phương trình đã cho là  \[x = 14.\]

Câu 3

A. \[5 + 7x \le 11.\]                                            
B. \[2,5x - 6 > 9 + 4x.\] 
C. \[5 + 7x \ge 15.\]                                            
D. \[3 - 0,2x > 13.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[x \ne 1;{\rm{ }}x \ne - 3\].                        
B. \[x \ne 2;{\rm{ }}x \ne 1\].                                
C. \[x \ne - 3;{\rm{ }}x \ne -2\].                      
D. \(x \ne - 2;{\rm{ }}x \ne 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phần 1. Câu trắc nghiệm nhiều phương án lựa chọn (3,0 điểm)

Phương trình nào sau đây không là phương trình bậc nhất hai ẩn?

A. \[\left( {x - 5} \right) + \left( {2y - 6} \right) = 0\].                           
B. \[5x - 3z = 6\].               
C. \(5x - 8y = 0.\)                                               
D. \[\left( {x - 2} \right)\left( {2y - 3} \right) = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x = - 9\,;\,\,x = 4.\]                                     
B. \[x = 4.\]                   
C. \[x = - 9.\]                    
D. \[x = 9\,;\,\,x = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn (2,0 điểm)

 Biết đường thẳng \(y = ax + b\) đi qua hai điểm \(M\left( {3;\,\, - 5} \right)\)\(N\left( {1;\,\,2} \right).\) Tính tổng bình phương của \(a\)\(b.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP