Cho hình bình hành \[ABCD\]. Trên cạnh \[AB\] lấy điểm \[M,\] trên cạnh \[DC\] lấy điểm \[N\] sao cho \[AM = CN.\]
a) Chứng minh \[AN\,{\rm{//}}\,CM.\]
b) Gọi \[O\] là giao điểm của \[AC\] và \[BD.\] Chứng minh \[O\] là trung điểm của \[MN.\]
Cho hình bình hành \[ABCD\]. Trên cạnh \[AB\] lấy điểm \[M,\] trên cạnh \[DC\] lấy điểm \[N\] sao cho \[AM = CN.\]
a) Chứng minh \[AN\,{\rm{//}}\,CM.\]
b) Gọi \[O\] là giao điểm của \[AC\] và \[BD.\] Chứng minh \[O\] là trung điểm của \[MN.\]
Quảng cáo
Trả lời:
|
Hướng dẫn giải a) Vì tứ giác \(ABCD\) là hình bình hành (gt) nên \[AB\,{\rm{//}}\,DC\] hay \[AM\,{\rm{//}}\,CN.\] Lại có \[AM = CN\] (gt) nên tứ giác \[AMCN\] là hình bình hành suy ra \[AN\,{\rm{//}}\,CM.\] b) Vì tứ giác \(ABCD\) là hình bình hành (gt) nên \[AC\] và \[BD\] cắt nhau tại trung điểm của mỗi đường. |
![]() |
Mà \[O\] là giao điểm của \[AC\] và \[BD\] nên \[O\] là trung điểm của \[AC\] và \[BD\].
Vì tứ giác \[AMCN\] là hình bình hành (theo a) nên \[AC\] và \[MN\] cắt nhau tại trung điểm của mỗi đường.
Mà \[O\] là trung điểm của \[AC\] nên \[O\] là trung điểm của \[MN\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\) Do đó tứ giác \[AMHN\] là hình chữ nhật. b) Tứ giác \[AMHN\] là hình chữ nhật nên \(AN = MH\) Mà \(PM = MH\)(do \[M\] là trung điểm của \[PH\,)\] nên\(AN = PM.\) Ta lại có \(AN\,{\rm{//}}\,PM\)(do \(AN \bot AB\,;PM \bot AB\,).\) Do đó tứ giác \(APMN\) là hình bình hành. |
![]() |
c) Vì \(NC\parallel MK\) nên tứ giác \(MNCK\) là hình thang.
Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). \(\left( 1 \right)\)
Tứ giác \(AMHN\) là hình chữ nhật.
Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {OAN} = \widehat {OHM}\) ( so le trong)
Do đó \(\widehat {OAN} = \widehat {OMH}\) \(\left( 2 \right)\)
Từ \(\left( 1 \right),\,\,\left( 2 \right)\) suy ra \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân.
d) Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\).
Lời giải
|
Hướng dẫn giải a) Do \(ABCD\) là hình bình hành nên \(AB = CD\) và \(AB\,{\rm{//}}\,CD.\) Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD\] nên \(AM = BM = \frac{1}{2}AB\) và \(DN = CN = \frac{1}{2}CD.\) Do đó \(AM = BM = DN = CN\). |
![]() |
Tứ giác \(DMBN\) có \(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(BM = DN\) nên \(DMBN\) là hình bình hành.
b) Xét tứ giác \(AMND\) có \(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(AM = DN\) nên \(AMND\) là hình bình hành.
Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\), suy ra \(AM = AD\).
Hình bình hành \(AMND\) có \(AM = AD\) nên \(AMND\) là hình thoi
Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)
c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành.
Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\).
Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\).
Tứ giác \[PMQN\] có \(PN\,{\rm{//}}\,QM\)và \(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành.
Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \).
Do đó hình bình hành \[PMQN\] là hình chữ nhật.
Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)
Mà \(PM = \frac{1}{2}DM\) và \(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo).
Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ .\)
Hình bình hành \(ABCD\) có \(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.
Vậy để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.
Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\] có \(PM = PN\) nên là hình vuông.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




