Câu hỏi:

22/09/2025 113 Lưu

Gia đình bác Nam có một khu đất hình chữ nhật, một cạnh đã được xây tường bao (như hình vẽ). Trên khu đất này, bác Nam định cải tạo một phần đất để trồng rau có dạng hình chữ nhật. Tận dụng tường bao đã có và \(40\,\,{\rm{m}}\) lưới B40, bác muốn vây ba mặt còn lại của phần đất trồng rau. Hỏi bác có thể vây kín được phần đất trồng rau có diện tích lớn nhất là bao nhiêu mét vuông?

Gia đình bác Nam có một khu đất hình chữ nhật, một cạnh đã được xây tường bao (như hình vẽ). Trên khu đất này, bác Nam định cải tạo một phần đất để trồng rau (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,\,\left( {\rm{m}} \right)\) là chiều rộng của khu đất hình chữ nhật của bác Nam cần cải tạo để trồng rau.

Khi đó, chiều dài của khu đất đó là \(40 - 2x\,\,\left( {\rm{m}} \right).\)

Diện tích của khu đất trồng rau là: \(S = x\left( {40 - 2x} \right)\,\,\left( {{{\rm{m}}^2}} \right).\)

Ta có \(S = x\left( {40 - 2x} \right) = - 2{\left( {x - 10} \right)^2} + 200.\)

Vì \( - 2{\left( {x - 10} \right)^2} \le 0\) với mọi \(x\) nên \( - 2{\left( {x - 10} \right)^2} + 200 \le 200\) với mọi \(x\).

Do đó \(S \le 200\) với mọi \(x\).

Vậy diện tích lớn nhất bác Nam có thể cải tạo để vây kín lưới ba mặt là \(200\,\,{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tứ giác \(AMHN\)

\(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)

Do đó tứ giác \[AMHN\] là hình chữ nhật.

b) Tứ giác \[AMHN\] là hình chữ nhật nên \(AN = MH\)

\(PM = MH\)(do \[M\] là trung điểm của \[PH\,)\] nên\(AN = PM.\)

Ta lại có \(AN\,{\rm{//}}\,PM\)(do \(AN \bot AB\,;PM \bot AB\,).\)

Do đó tứ giác \(APMN\) là hình bình hành.

Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc AB, M thuộc AB. Kẻ HN vuông góc AC, N thuộc AC (ảnh 1)

c) \(NC\parallel MK\) nên tứ giác \(MNCK\) là hình thang.

Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\).         \(\left( 1 \right)\)

Tứ giác \(AMHN\) là hình chữ nhật.

Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)

Suy ra \(\widehat {OMH} = \widehat {OHM}\)\(\widehat {OAN} = \widehat {OHM}\) ( so le trong)

Do đó \(\widehat {OAN} = \widehat {OMH}\)       \(\left( 2 \right)\)

Từ \(\left( 1 \right),\,\,\left( 2 \right)\) suy ra \(\widehat {OMH} = \widehat {HKC}\).

Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân.

d) Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên

\(AD = \frac{2}{3}AI\)\(AI = \frac{1}{2}AK\).

Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\).

Lời giải

a) Chu vi mảnh đất làm nhà là: \(2\left( {x - 25 + x - 15} \right) = 2\left( {2x - 40} \right) = 4x - 80\).

Vậy đa thức biểu thị chu vi của mảnh đất làm nhà \(4x - 80\) (m).

b) Vì chu vi của mảnh đất dành để làm nhà bằng \[40\,\,{\rm{m}}\] nên ta có

\(4x - 80 = 40\) hay \(4x = 120\) nên \(x = 30\).

Diện tích của khu vườn hình vuông ban đầu là \[{30^2} = 900{\rm{ }}({{\rm{m}}^{\rm{2}}}).\]

Vậy diện tích của khu vườn hình vuông ban đầu là \[900{\rm{ }}{{\rm{m}}^{\rm{2}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP