Câu hỏi:

27/09/2025 13 Lưu

Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực \(A,B\) cho kết quả như sau:

Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn? (ảnh 1)

Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

A. Lĩnh vực\(A\) có độ rủi ro bằng lĩnh vực \(B\).
B. Lĩnh vực\(A\) có độ rủi ro cao hơn lĩnh vực \(B\).
C. Lĩnh vực \(A\) có độ rủi ro thấp hơn lĩnh vực \(B\).
D. Không so sánh được.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Lĩnh vực \(A\)

Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn? (ảnh 2)

Lĩnh vực \(B\)

Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn? (ảnh 3)

Giá trị trung bình của hai lĩnh vực \(A\) và \(B\) lần lượt là

\[{\bar x_A} = \frac{1}{{25}}.\left( {2.7,5 + 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5} \right) = 18,5{\rm{ }}\]

\[{\bar x_B} = \frac{1}{{25}}.\left( {8.7,5 + 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5} \right) = 16,9{\rm{ }}\]

Về độ trung bình đầu tư vào lĩnh vực \(A\) lãi hơn lĩnh vực \(B\).

Độ lệch chuẩn của hai lĩnh vực \(A\) và \(B\) lần lượt là

\[{s_A} = \sqrt {\frac{1}{{25}}.\left( {2.7,{5^2} + 5.12,{5^2} + 8.17,{5^2} + 6.22,{5^2} + 4.27,{5^2}} \right) - 18,{5^2}}  = 5,8\];

\({s_B} = \sqrt {\frac{1}{{25}}.\left( {8.7,{5^2} + 4.12,{5^2} + 2.17,{5^2} + 5.22,{5^2} + 6.27,{5^2}} \right) - 16,{9^2}}  = 8,04.\)

Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực \(B\) cao hơn lĩnh vực \(A\) nên đầu tư vào lĩnh vực \(B\) rủi ro hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ của mẫu số liệu là: \(n = 15 + 10 + 5 + 2 = 32.\)

a) Đúng. Giá trị đại diện của nhóm thứ I, II, III, IV theo chiều từ trái sang phải lần lượt là:

\({x_1} = \frac{{0 + 10}}{2} = 5,\) \({x_2} = \frac{{10 + 20}}{2} = 15,\)\({x_3} = \frac{{20 + 30}}{2} = 25,\)\({x_4} = \frac{{30 + 40}}{2} = 35.\)

b) Sai. Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là:

\(\bar x = \frac{1}{{32}}\left( {15.5 + 10.15 + 5.25 + 2.35} \right) = 13,125.\)

c) Đúng. Phương sai của mẫu số liệu trên là

\({s^2} = \frac{1}{{32}}\left[ {15.{{\left( 5 \right)}^2} + 10.{{\left( {15} \right)}^2} + 5.{{\left( {25} \right)}^2} + 2.{{\left( {35} \right)}^2}} \right] - {\left( {13,125} \right)^2} \approx 251.\)

d) Sai. Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx \sqrt {251}  \approx 15,8.\)

Lời giải

Từ khoảng biến thiên của điểm thi của học sinh hai lớp 12A và 12B, điểm thi khảo sát môn Toán của lớp 12A phân tán hơn của lớp 12B. (ảnh 2)

a) Sai. Khoảng biến thiên của điểm thi của học sinh hai lớp 12A là \({R_A} = 10 - 6 = 4\).

Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).

Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.

b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :

\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).

Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :

\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).

Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.

c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

Q1=7+30428.1=123167,69;Q3=9+9042030.1=109129,08Q=Q3Q1=325361,34.

d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).

Q1=6+304214.1=179286,39;Q3=7+9041424.1=353487,35Q=Q3Q1=3233360,96

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(4.\)                           
B. \(5.\)                         
C. \[256.\]                            
D. \(50.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(598\).                       
B. \(597\).                     
C. \(2477,1\).                       
D. \(256,2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP