Câu hỏi:

27/09/2025 20 Lưu

Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:

Hãy xác định phương sai của mẫu số liệu trên (làm tròn kết quả đến hàng phần trăm). (ảnh 1)

Hãy xác định phương sai của mẫu số liệu trên (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn giá trị đại diện cho các nhóm số liệu, ta có:

Hãy xác định phương sai của mẫu số liệu trên (làm tròn kết quả đến hàng phần trăm). (ảnh 2)

Tổng số vận động viên là: \(3 + 7 + 8 + 2 = 20\).

Thời gian chạy trung bình của các vận động viên là:

\(\bar x = \frac{1}{{20}}(10,3.3 + 10,5.7 + 10,7.8 + 10,9.2) = 10,59\) (giây).

Phương sai của mẫu số liệu là:

\({s^2} = \frac{1}{{20}}\left( {10,{3^2}.3 + 10,{5^2} \cdot 7 + 10,{7^2} \cdot 8 + 10,{9^2}.2} \right) - 10,{59^2} = 0,0299 \approx 0,03\).

Đáp án: 0,03.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ của mẫu số liệu là: \(n = 15 + 10 + 5 + 2 = 32.\)

a) Đúng. Giá trị đại diện của nhóm thứ I, II, III, IV theo chiều từ trái sang phải lần lượt là:

\({x_1} = \frac{{0 + 10}}{2} = 5,\) \({x_2} = \frac{{10 + 20}}{2} = 15,\)\({x_3} = \frac{{20 + 30}}{2} = 25,\)\({x_4} = \frac{{30 + 40}}{2} = 35.\)

b) Sai. Thời gian trung bình dùng Facebook của mỗi bạn trong lớp 12C1 là:

\(\bar x = \frac{1}{{32}}\left( {15.5 + 10.15 + 5.25 + 2.35} \right) = 13,125.\)

c) Đúng. Phương sai của mẫu số liệu trên là

\({s^2} = \frac{1}{{32}}\left[ {15.{{\left( 5 \right)}^2} + 10.{{\left( {15} \right)}^2} + 5.{{\left( {25} \right)}^2} + 2.{{\left( {35} \right)}^2}} \right] - {\left( {13,125} \right)^2} \approx 251.\)

d) Sai. Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx \sqrt {251}  \approx 15,8.\)

Lời giải

Bổ sung thêm các giá trị đại diện, ta lập được bảng sau:

Nhóm

\({{\bf{c}}_{\bf{i}}}\)

\({{\bf{n}}_{\bf{i}}}\)

\([44;46)\)

45

3

\([46;48)\)

47

3

\([48;50)\)

49

10

\([50;52)\)

51

15

\([52;54)\)

53

7

\([54;56)\)

55

2

 

 

\(N = 40\)

Từ mẫu số liệu đã cho, ta tính được số trung bình là:

\(\bar x = \frac{{3.45 + 3.47 + 10.49 + 15.51 + 7.53 + 2.55}}{{40}} = \frac{{2012}}{{40}} = 50,3\).

\(\bar x\) không phải là số nguyên nên để tính phương sai ta tính:

\(\overline {{x^2}}  = \frac{{{{3.45}^2} + {{3.47}^2} + {{10.49}^2} + {{15.51}^2} + {{7.53}^2} + {{2.55}^2}}}{{40}} = 2536.\)

Do đó \({s^2} = \overline {{x^2}}  - {(\bar x)^2} = 2536 - 50,{3^2} = 2536 - 2530,09 = 5,91\).

Vậy mẫu số liệu về chiều dài của 40 trẻ sơ sinh có độ lệch chuẩn là \(s = \sqrt {5,91}  \approx 2,43\).

Đáp án: 2,43.

Câu 5

A. \(4.\)                           
B. \(5.\)                         
C. \[256.\]                            
D. \(50.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(598\).                       
B. \(597\).                     
C. \(2477,1\).                       
D. \(256,2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP