Câu hỏi:

29/09/2025 1 Lưu

Bảng dưới đây cho ta bảng tần số ghép nhóm số liệu thống kê cân nặng của \(40\)học sinh lớp \(11A\) trong

một trường trung học phổ thông (đơn vị: kilôgam).

Nhóm

Tần số

Tần số

tích lũy

\(\left[ {30;40} \right)\)

2

2

\(\left[ {40;50} \right)\)

10

12

\(\left[ {50;60} \right)\)

16

28

\(\left[ {60;70} \right)\)

8

36

\(\left[ {70;80} \right)\)

2

38

\(\left[ {80;90} \right)\)

2

40

 

\(n = 40\)

 

 Xét tính đúng – sai của các mệnh đề sau?

a) Khoảng biến thiên của mẫu số liệu ghép nhóm là \(R = 60\).

b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \(\Delta Q = 14,5\).

c) Số trung bình cộng của mẫu số liệu ghép nhóm là \(\bar x = 56\).

d) Phương sai của mẫu số liệu ghép nhóm là \({s^2} = 128\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có đầu mút trái của nhóm 1 là \({a_1} = 30\), đầu mút phải của nhóm 6 là \({a_7} = 90\) nên \(R = {a_7} - {a_1} = 60\).

Vậy mệnh đề đúng.

b) Ta có \(\frac{n}{4} = \frac{{40}}{4} = 10\) mà \(2 < 10 < 12\). Suy ra nhóm \(2\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(10\). Xét nhóm \(2\) là nhóm \(\left[ {40\,;\,50} \right)\) có \(s = 40\); \(h = 10\); \({n_2} = 10\) và nhóm \(1\) là nhóm \(\left[ {30\,;\,40} \right)\) có \(c{f_1} = 2\). Áp dụng công thức, ta có tứ phân vị thứ nhất là:

\({Q_1} = 40 + \left( {\frac{{10 - 2}}{{10}}} \right).10 = 48\) (\(kg\)).

Ta có \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) mà \(28 < 30 < 36\). Suy ra nhóm \(4\)là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(30\). Xét nhóm \(4\)là nhóm \(\left[ {60\,;\,70} \right)\) có \(t = 60\); \(l = 10\); \({n_4} = 8\) và nhóm \(3\) là nhóm \(\left[ {50\,;\,60} \right)\)có \(c{f_3} = 28\). Áp dụng công thức, ta có tứ phân vị thứ ba là:

\({Q_3} = 60 + \left( {\frac{{30 - 28}}{8}} \right).10 = 62,5\)(\(kg\)).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \(\Delta Q = {Q_3} - {Q_1} = 14,5\).

Vậy mệnh đề đúng.

c) Ta có

Nhóm

Giá trị

đại diện

Tần số

\(\left[ {30;40} \right)\)

35

2

\(\left[ {40;50} \right)\)

45

10

\(\left[ {50;60} \right)\)

55

16

\(\left[ {60;70} \right)\)

65

8

\(\left[ {70;80} \right)\)

75

2

\(\left[ {80;90} \right)\)

85

2

 

 

\(n = 40\)

Số trung bình cộng của mẫu số liệu ghép nhóm là

\(\bar x = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\).

Vậy mệnh đề đúng.

d) Phương sai của mẫu số liệu ghép nhóm là

\({s^2} = \frac{{2{{\left( {35 - \bar x} \right)}^2} + 10{{\left( {45 - \bar x} \right)}^2} + 16{{\left( {55 - \bar x} \right)}^2} + 8{{\left( {65 - \bar x} \right)}^2} + 2{{\left( {75 - \bar x} \right)}^2} + 2{{\left( {85 - \bar x} \right)}^2}}}{{40}} = 129\).

Vậy mệnh đề sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Giá trị đại diện cho mẫu số liệu

Lương

\(\left[ {10;15} \right)\)

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right]\)

 

Giá trị

đại diện

12,5

17,5

22,5

27,5

32,5

37,5

 

Công ty A

18

13

9

5

3

2

\(n = 50\)

Công ty B

19

12

7

6

3

3

\(n = 50\)

 

Trung bình lương của công ty A

\(\overline {{x_A}}  = \frac{{12,5.18 + 17,5.13 + 22,5.9 + 27,5.5 + 32,5.3 + 37,5.2}}{{50}} = 19,3\).

Trung bình lương của công ty B

\(\overline {{x_B}}  = \frac{{12,5.19 + 17,5.12 + 22,5.7 + 27,5.6 + 32,5.3 + 37,5.3}}{{50}} = 19,6\).

Ta có \(\overline {{x_A}}  < \overline {{x_B}} \) suy ra công ty B trả lương nhiều hơn công ty A

b) Phương sai và độ lệch chuẩn lương của công ty A

\(S_A^2 = \frac{{18.{{\left( {12,5 - \overline {{x_A}} } \right)}^2} + 13.{{\left( {17,5 - \overline {{x_A}} } \right)}^2} + 9{{\left( {22,5 - \overline {{x_A}} } \right)}^2} + 5.{{\left( {27,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 2.{{\left( {37,5 - \overline {{x_A}} } \right)}^2}}}{{50}}\)\(S_A^2 = 49,76\) suy ra độ lệch chuẩn: \({S_A} \approx 7,05\)

Phương sai và độ lệch chuẩn lương của công ty B

\(S_B^2 = \frac{{19.{{\left( {12,5 - \overline {{x_B}} } \right)}^2} + 12.{{\left( {17,5 - \overline {{x_B}} } \right)}^2} + 7{{\left( {22,5 - \overline {{x_B}} } \right)}^2} + 6.{{\left( {27,5 - \overline {{x_B}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {37,5 - \overline {{x_B}} } \right)}^2}}}{{50}}\)

\(S_B^2 = 58,09\) suy ra độ lệch chuẩn: \({S_B} \approx 7,62\)

Ta có \({S_B} > {S_A}\) suy ra công ty A trả lương đồng đều công ty B

Lời giải

Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 160\), đầu mút phải của nhóm là \({a_6} = 175\). Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là

\(R = {a_6} - {a_1} = 175 - 160 = 15\) (cm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{675}}{{62}}\].                
B. \[\frac{{9775}}{{31}}\].    
C. \[\frac{{16715}}{{62}}\]. 
D. \[\frac{{16175}}{{62}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP