Câu hỏi:

29/09/2025 3 Lưu

Cho mẫu thống kê trả lương của hai công ty A và B (đơn vị: triệu đồng).

Lương

\(\left[ {10;15} \right)\)

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right]\)

 

Công ty A

18

13

9

5

3

2

\(n = 50\)

Công ty B

19

12

7

6

3

3

\(n = 50\)

a) Tính lương trung bình của hai công ty A, B? Công ty nào trả lương nhiều hơn?

b) Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm lần lượt biểu diễn mức lương của hai công ty A và B. Công ty nào có mức lương đồng đều hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Giá trị đại diện cho mẫu số liệu

Lương

\(\left[ {10;15} \right)\)

\(\left[ {15;20} \right)\)

\(\left[ {20;25} \right)\)

\(\left[ {25;30} \right)\)

\(\left[ {30;35} \right)\)

\(\left[ {35;40} \right]\)

 

Giá trị

đại diện

12,5

17,5

22,5

27,5

32,5

37,5

 

Công ty A

18

13

9

5

3

2

\(n = 50\)

Công ty B

19

12

7

6

3

3

\(n = 50\)

 

Trung bình lương của công ty A

\(\overline {{x_A}}  = \frac{{12,5.18 + 17,5.13 + 22,5.9 + 27,5.5 + 32,5.3 + 37,5.2}}{{50}} = 19,3\).

Trung bình lương của công ty B

\(\overline {{x_B}}  = \frac{{12,5.19 + 17,5.12 + 22,5.7 + 27,5.6 + 32,5.3 + 37,5.3}}{{50}} = 19,6\).

Ta có \(\overline {{x_A}}  < \overline {{x_B}} \) suy ra công ty B trả lương nhiều hơn công ty A

b) Phương sai và độ lệch chuẩn lương của công ty A

\(S_A^2 = \frac{{18.{{\left( {12,5 - \overline {{x_A}} } \right)}^2} + 13.{{\left( {17,5 - \overline {{x_A}} } \right)}^2} + 9{{\left( {22,5 - \overline {{x_A}} } \right)}^2} + 5.{{\left( {27,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 2.{{\left( {37,5 - \overline {{x_A}} } \right)}^2}}}{{50}}\)\(S_A^2 = 49,76\) suy ra độ lệch chuẩn: \({S_A} \approx 7,05\)

Phương sai và độ lệch chuẩn lương của công ty B

\(S_B^2 = \frac{{19.{{\left( {12,5 - \overline {{x_B}} } \right)}^2} + 12.{{\left( {17,5 - \overline {{x_B}} } \right)}^2} + 7{{\left( {22,5 - \overline {{x_B}} } \right)}^2} + 6.{{\left( {27,5 - \overline {{x_B}} } \right)}^2} + 3.{{\left( {32,5 - \overline {{x_A}} } \right)}^2} + 3.{{\left( {37,5 - \overline {{x_B}} } \right)}^2}}}{{50}}\)

\(S_B^2 = 58,09\) suy ra độ lệch chuẩn: \({S_B} \approx 7,62\)

Ta có \({S_B} > {S_A}\) suy ra công ty A trả lương đồng đều công ty B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong mẫu số liệu ghép nhóm đó, ta có: đầu mút trái của nhóm 1 là \({a_1} = 0\), đầu mút phải của nhóm 5 là \({a_6} = 15\).

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = {a_6} - {a_1} = 15 - 0 = 15\)(phút).

Câu 2

A. \[\frac{{675}}{{62}}\].                
B. \[\frac{{9775}}{{31}}\].    
C. \[\frac{{16715}}{{62}}\]. 
D. \[\frac{{16175}}{{62}}\].

Lời giải

Số hộ gia đình được khảo sát (cỡ mẫu) là \[n = 24 + 62 + 34 + 21 + 9 = 150\].

Ta có, \(\frac{n}{4} = \frac{{150}}{4} = \frac{{75}}{2}\) suy ra \(24 < \frac{{75}}{2} < 24 + 62\) nên nhóm thứ hai \[\left[ {250;300} \right)\] là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{{75}}{2}\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 250 + \frac{{\frac{{150}}{4} - 24}}{{62}}\left( {300 - 250} \right) = \frac{{16175}}{{62}}\].chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP