Cho tứ diện \(ABCD\) có \(M,N\) lần lượt là trung điểm các cạnh \(AC\) và \(BD.\) Gọi \(G\) là trung điểm của đoạn thẳng \(MN.\) Hãy chọn khẳng định sai
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \(\overrightarrow {GA} + \overrightarrow {GC} = 2\overrightarrow {GM} \) nên đáp án A đúng.
\(\overrightarrow {GB} + \overrightarrow {GD} = \overrightarrow {MN} \) đúng vì \(\overrightarrow {GB} + \overrightarrow {GD} = 2\overrightarrow {GN} = \overrightarrow {MN} \)
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\) đúng vì \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).
Đáp án D: \(2\overrightarrow {NM} = \overrightarrow {AB} + \overrightarrow {CD} \) sai vì :
\[\begin{array}{l}\overrightarrow {AB} + \overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NB} } \right) + \left( {\overrightarrow {CM} + \overrightarrow {MN} + \overrightarrow {ND} } \right)\\ = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {CM} } \right) + \left( {\overrightarrow {NB} + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} .\end{array}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

1. Mệnh đề đúng vì \(\left| {\overrightarrow {AB} } \right| = AB = a\).
2. Mệnh đề đúng vì \[\overrightarrow {SA} .\overrightarrow {SB} = \left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {SB} } \right|.\sin \widehat {ASB} = a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{2}\]
3. Mệnh đề sai:
Do \(N\) là trung điểm của \(BC\) nên \(\overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SN} \) và \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {MB} \).
Suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2\left( {\overrightarrow {SN} + \overrightarrow {AN} } \right)\)(1)
Do \(M\) là trung điểm của \(SA\) nên \(\overrightarrow {NA} + \overrightarrow {NS} = 2\overrightarrow {NM} \Leftrightarrow \overrightarrow {AN} + \overrightarrow {SN} = 2\overrightarrow {MN} \) (2).
Từ (1) và (2) suy ra \(\overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {AB} + \overrightarrow {AC} = 2.2.\overrightarrow {MN} = 4\overrightarrow {MN} \).
4. Mệnh đề sai
Gọi \(G\) là trọng tâm tam giác\(ABC\).
Do tứ diện \(SABC\) là tứ diện đều và \(I\) là trọng tâm tứ diện nên \(d\left( {I,\left( {ABC} \right)} \right) = IG\)
Tam giác \(ABC\) đều cạnh \(a\), \(N\)là trung điểm của \(BC\), suy ra \(AN = \frac{{a\sqrt 3 }}{2}\).
Do \(G\) là trọng tâm tam giác\(ABC\) nên \(AG = \frac{2}{3}AN = \frac{{a\sqrt 3 }}{3}\).
Do tứ diện \(SABC\) là tứ diện đều nên \(SG \bot \left( {ABC} \right)\)\( \Rightarrow SG \bot AG\).
Tam giác \(SAG\) vuông tại \(G\) nên \(SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{3}} = \frac{{a\sqrt 6 }}{3}\).
Do \(I\) là trọng tâm tứ diện\(SABC\) nên \(IG = \frac{1}{4}SG = \frac{1}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{{12}}\).
Vậy \(d\left( {I,\left( {ABC} \right)} \right) = \frac{{a\sqrt 6 }}{{12}}\).
Lời giải
1. Mệnh đề sai
2. Mệnh đề đúng: Vì \[M\]là trung điểm \[AB\]nên \[\overrightarrow {EA} + \overrightarrow {EB} = 2\overrightarrow {EM} \], \[N\]là trung điểm \[CD\]nên \[\overrightarrow {EC} + \overrightarrow {ED} = 2\overrightarrow {EN} \]
Ta có \[\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 2\left( {\overrightarrow {EM} + \overrightarrow {EN} } \right) = \vec 0\]
3. Mệnh đề đúng: Vì \[\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = \left( {\overrightarrow {AC} + \overrightarrow {CB} } \right).\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} \]
\[\begin{array}{l} = \overrightarrow {AC} .\left( {\overrightarrow {CD} + \overrightarrow {DB} } \right) + \overrightarrow {AD} .\overrightarrow {BC} + \overrightarrow {CB.} \overrightarrow {CD} = \overrightarrow {AC} .\overrightarrow {CB} + \overrightarrow {AD} .\overrightarrow {BC} + \overrightarrow {CB.} \overrightarrow {CD} \\ = \overrightarrow {CB} \left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) + \overrightarrow {CB.} \overrightarrow {CD} = \vec 0\end{array}\]
![Cho tứ diện \(ABCD\) có cạnh \(a\). Gọi \[M,N\]lần lượt là trung điểm của \[AB,CD\]. Các mệnh đề sau đúng hay sai? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/24-1759239382.png)
4. Mệnh đề đúng:
Gọi \(M\) là điểm thoả mãn hệ thức \(3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \vec 0\) suy ra \[M\] cố định vì \(A,B,C,D\) cố định. Ta có
\(P = 3{\overrightarrow {IA} ^2} + {\overrightarrow {IB} ^2} + {\overrightarrow {IC} ^2} + {\overrightarrow {ID} ^2} = 3{\left( {\overrightarrow {IM} + \overrightarrow {MA} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MB} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MC} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MD} } \right)^2}\)
\( = 6I{M^2} + 3M{A^2} + M{B^2} + M{C^2} + M{D^2} + 2\overrightarrow {IM} \left( {3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right)\)
\( = 6I{M^2} + 3M{A^2} + M{B^2} + M{C^2} + M{D^2}\).
Do đó để \(P\) nhỏ nhất thì \[I\] trùng với \(M\). Gọi \(G\) là trọng tâm tam giác \(BCD\).
\(\begin{array}{l}3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \vec 0 \Leftrightarrow 3\overrightarrow {MA} + \left( {\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right) = \vec 0\\ \Leftrightarrow 3\overrightarrow {MA} + 3\overrightarrow {MG} = \vec 0 \Leftrightarrow \overrightarrow {MA} + \overrightarrow {MG} = \vec 0\end{array}\)
Suy ra \[M\] là trung điểm của \(AG\).
Ta có \(BG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{a}{{\sqrt 3 }} \Rightarrow AG = \sqrt {A{B^2} - B{G^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2}} = \frac{{a\sqrt 2 }}{{\sqrt 3 }}\)
\( \Rightarrow MA = \frac{1}{2}AG = \frac{a}{{\sqrt 6 }} \Rightarrow M{A^2} = \frac{{{a^2}}}{6}\).
Lại có \(M{D^2} = M{C^2} = M{B^2} = M{G^2} + B{G^2} = \frac{{{a^2}}}{6} + \frac{{{a^2}}}{3} = \frac{{{a^2}}}{2}\).
Vậy giá trị nhỏ nhất là \[P = 3.\frac{{{a^2}}}{6} + 3.\frac{{{a^2}}}{2} = 2{a^2}\] khi \[I\] trùng với \(M\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.