Cho tứ diện \(ABCD\) có cạnh \(a\). Gọi \[M,N\]lần lượt là trung điểm của \[AB,CD\]. Các mệnh đề sau đúng hay sai?
1. Vec tơ \[\overrightarrow {AB} \] và \[\overrightarrow {CD} \] cùng hướng.
2. \[\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = \vec 0\] với \[E\] là trung điểm \[MN\].
3. \[\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = \vec 0\].
4. Điểm \[I\] xác định bởi \(P = 3{\overrightarrow {IA} ^2} + {\overrightarrow {IB} ^2} + {\overrightarrow {IC} ^2} + {\overrightarrow {ID} ^2}\) có giá trị nhỏ nhất. Khi đó giá trị nhỏ nhất của \(P\) là \(2{a^2}\)
Cho tứ diện \(ABCD\) có cạnh \(a\). Gọi \[M,N\]lần lượt là trung điểm của \[AB,CD\]. Các mệnh đề sau đúng hay sai?
1. Vec tơ \[\overrightarrow {AB} \] và \[\overrightarrow {CD} \] cùng hướng.
2. \[\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = \vec 0\] với \[E\] là trung điểm \[MN\].
3. \[\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = \vec 0\].
4. Điểm \[I\] xác định bởi \(P = 3{\overrightarrow {IA} ^2} + {\overrightarrow {IB} ^2} + {\overrightarrow {IC} ^2} + {\overrightarrow {ID} ^2}\) có giá trị nhỏ nhất. Khi đó giá trị nhỏ nhất của \(P\) là \(2{a^2}\)
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:

1. Mệnh đề sai
2. Mệnh đề đúng: Vì \[M\]là trung điểm \[AB\]nên \[\overrightarrow {EA} + \overrightarrow {EB} = 2\overrightarrow {EM} \], \[N\]là trung điểm \[CD\]nên \[\overrightarrow {EC} + \overrightarrow {ED} = 2\overrightarrow {EN} \]
Ta có \[\overrightarrow {EA} + \overrightarrow {EB} + \overrightarrow {EC} + \overrightarrow {ED} = 2\left( {\overrightarrow {EM} + \overrightarrow {EN} } \right) = \vec 0\]
3. Mệnh đề đúng: Vì \[\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = \left( {\overrightarrow {AC} + \overrightarrow {CB} } \right).\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} \]
\[\begin{array}{l} = \overrightarrow {AC} .\left( {\overrightarrow {CD} + \overrightarrow {DB} } \right) + \overrightarrow {AD} .\overrightarrow {BC} + \overrightarrow {CB.} \overrightarrow {CD} = \overrightarrow {AC} .\overrightarrow {CB} + \overrightarrow {AD} .\overrightarrow {BC} + \overrightarrow {CB.} \overrightarrow {CD} \\ = \overrightarrow {CB} \left( {\overrightarrow {AC} - \overrightarrow {AD} } \right) + \overrightarrow {CB.} \overrightarrow {CD} = \vec 0\end{array}\]
4. Mệnh đề đúng:
Gọi \(M\) là điểm thoả mãn hệ thức \(3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \vec 0\) suy ra \[M\] cố định vì \(A,B,C,D\) cố định. Ta có
\(P = 3{\overrightarrow {IA} ^2} + {\overrightarrow {IB} ^2} + {\overrightarrow {IC} ^2} + {\overrightarrow {ID} ^2} = 3{\left( {\overrightarrow {IM} + \overrightarrow {MA} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MB} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MC} } \right)^2} + {\left( {\overrightarrow {IM} + \overrightarrow {MD} } \right)^2}\)
\( = 6I{M^2} + 3M{A^2} + M{B^2} + M{C^2} + M{D^2} + 2\overrightarrow {IM} \left( {3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right)\)
\( = 6I{M^2} + 3M{A^2} + M{B^2} + M{C^2} + M{D^2}\).
Do đó để \(P\) nhỏ nhất thì \[I\] trùng với \(M\). Gọi \(G\) là trọng tâm tam giác \(BCD\).
\(\begin{array}{l}3\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = \vec 0 \Leftrightarrow 3\overrightarrow {MA} + \left( {\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right) = \vec 0\\ \Leftrightarrow 3\overrightarrow {MA} + 3\overrightarrow {MG} = \vec 0 \Leftrightarrow \overrightarrow {MA} + \overrightarrow {MG} = \vec 0\end{array}\)
Suy ra \[M\] là trung điểm của \(AG\).
Ta có \(BG = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{a}{{\sqrt 3 }} \Rightarrow AG = \sqrt {A{B^2} - B{G^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2}} = \frac{{a\sqrt 2 }}{{\sqrt 3 }}\)
\( \Rightarrow MA = \frac{1}{2}AG = \frac{a}{{\sqrt 6 }} \Rightarrow M{A^2} = \frac{{{a^2}}}{6}\).
Lại có \(M{D^2} = M{C^2} = M{B^2} = M{G^2} + B{G^2} = \frac{{{a^2}}}{6} + \frac{{{a^2}}}{3} = \frac{{{a^2}}}{2}\).
Vậy giá trị nhỏ nhất là \[P = 3.\frac{{{a^2}}}{6} + 3.\frac{{{a^2}}}{2} = 2{a^2}\] khi \[I\] trùng với \(M\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\cos \left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {SM} .\overrightarrow {BC} }}{{\left| {\overrightarrow {SM} } \right|\left| {\overrightarrow {BC} } \right|}} = \frac{{\overrightarrow {SM} .\overrightarrow {BC} }}{{SM.BC}}\).
\(\overrightarrow {SM} .\overrightarrow {BC} = \frac{1}{2}\left( {\overrightarrow {SA} + \overrightarrow {SB} } \right).\left( {\overrightarrow {SC} - \overrightarrow {SB} } \right)\)
\(\begin{array}{l} = \frac{1}{2}\left( {\overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SA} .\overrightarrow {SB} + \overrightarrow {SB} .\overrightarrow {SC} - \overrightarrow {SB} .\overrightarrow {SB} } \right)\\ = - \frac{1}{2}\overrightarrow {SB} .\overrightarrow {SB} = - \frac{1}{2}S{B^2} = - \frac{{{a^2}}}{2}.\end{array}\).
Tam giác \(SAB\) và \(SBC\) vuông cân tại \(S\) nên \(AB = BC = a\sqrt 2 \). \( \Rightarrow SM = \frac{{AB}}{2} = \frac{{a\sqrt 2 }}{2}\).
Do đó \(\cos \left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = \frac{{ - \frac{{{a^2}}}{2}}}{{\frac{{a\sqrt 2 }}{2}.a\sqrt 2 }} = - \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {SM} ,\overrightarrow {BC} } \right) = {120^0}\).
Lời giải
Đặt \(\overrightarrow {BA} = \vec x\), \(\overrightarrow {BB'} = \vec y\), \(\overrightarrow {BC} = \vec z\).
Do \(\overrightarrow {CM} \), \(\overrightarrow {CA'} \) là hai vectơ cùng phương \( \Rightarrow \exists \,k \in \mathbb{R}:\,\overrightarrow {CM} = k.\overrightarrow {CA'} \).
Và \(\overrightarrow {C'N} \), \(\overrightarrow {C'D} \) là hai vectơ cùng phương \( \Rightarrow \exists \,h \in \mathbb{R}:\,\overrightarrow {C'N} = h.\overrightarrow {C'D} \).
Ta có: \[\overrightarrow {BD'} = \overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow x + \overrightarrow y + \overrightarrow z \], (1)
Ta lại có: \(\overrightarrow {MN} = \overrightarrow {CN} - \overrightarrow {CM} = \overrightarrow {CC'} + \overrightarrow {C'N} - \overrightarrow {CM} = \overrightarrow {CC'} + h.\overrightarrow {C'D} - k.\overrightarrow {CA'} \)
\( = \overrightarrow y + h.( - \overrightarrow y + \overrightarrow x ) - k.\left( {\overrightarrow y - \overrightarrow z + \overrightarrow x } \right) = \left( {h - k} \right).\overrightarrow x + \left( {1 - h - k} \right).\overrightarrow y + k.\overrightarrow z \), (2)
Do \(MN\parallel B'D\) nên tồn tại . Từ (1) và (2) ta có\(\left\{ \begin{array}{l}h - k = t\\1 - h - k = t\\k = t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = t\\h = 2t\\1 - 3t = t\end{array} \right. \Rightarrow t = \frac{1}{4} \Rightarrow \overrightarrow {MN} = \frac{1}{4}\overrightarrow {BD'} \).
Vậy \(\frac{{MN}}{{BD'}} = \frac{1}{4}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.